TO-Can型半導体レーザー:Ø3.8 mm、TO-46、Ø5.6 mm、Ø9 mm、Ø9.5 mm

- Ø3.8 mm, TO-46, Ø5.6 mm, Ø9 mm, and Ø9.5 mm Laser Diodes
- Center Wavelengths Ranging from 375 nm to 4.60 µm
- Output Powers from 0.2 mW to 2 W
Ø3.8 mm
Ø9 mm
Ø5.6 mm
Application Idea
Our Laser Diode Driver Kits Include an
LD Controller, TEC Controller,
LD/TEC Mount, and Accessories
Ø9.5 mm
(DPSS Laser)
Ø9 mm
(High Heat Load)
TO-46
(VCSEL Diode)

Please Wait
各種資料とシリアル番号付き製品のご案内 | |
---|---|
![]() | 仕様や図面等の情報は、仕様表内のInfo欄の青いアイコンから取得可能です。 |
![]() | 型番横の赤い資料アイコンでは、各種技術資料を提供しています。 |
Choose Item | 型番の左横にChoose Itemと記載されている製品はシリアル番号をお選びください。ドロップダウンリストで表示される在庫製品から、中心波長などご希望の仕様に近い製品にチェックを入れてご依頼ください。シリアル番号横の赤いアイコンから、各製品ごとのL-I-Vやスペクトル測定値がダウンロード可能です。 |
特長
- ファブリペロー(FP)レーザ、分布帰還型(DFB)レーザ、体積型ホログラフィック回折格子(VHG)レーザ、半導体励起固体(DPSS)レーザ、量子カスケードレーザ(QCL)、インターバンドカスケードレーザ(ICL)、面発光型半導体レーザ(VCSEL)
- 出力:0.2 mW~2 W
- 中心波長は375 nm~9.5 µmで選択可能
- 当社のLDピンコードに対応したマウントが選定可能
- 当社の半導体レーザーコントローラおよびTEC コントローラと併せて使用可能
TOパッケージ型半導体レーザは、標準のØ3.8 mm、Ø5.6 mmまたはØ9 mmのTO Canや、TO-46、Ø9.5 mmからお選びいただけます。 ピン配列は、標準のA、B、C、D、E、F、G、Hのピンコードに分類しています(下図参照)。 ピンコードをご参照いただくことで、対応するマウントが簡単に分かります。
いくつかの半導体レーザは、ヘッダーパッケージでも用意しています。なお、ご要望に応じて封止済みTO-Can型パッケージとして ご提供可能です(下表参照)。 詳細は当社までお問い合わせください。
中心波長について
半導体レーザ毎に記載されている中心波長は典型値です。 個々の半導体レーザの実際の中心波長は製造ロットごとに異なります。 したがって、ご購入になった半導体レーザの中心波長は、典型値と異なる場合があります。 また半導体レーザは、温度調整によっても発振波長を微調整できます。 「波長試験済(Wavelength Tested)」に「Yes」と記載されている製品は、個別製品毎に試験が行われ、主波長が記録されていることを意味しています。 試験済み製品の多くについては、下記の「Choose Item」をクリックすると在庫品の主波長、出力、駆動電流が記載されたリストがご覧になれます。 シリアル番号横の赤いアイコンをクリックすると、シリアル番号毎のL-I-Vやスペクトル特性が記載されたPDFファイルをご覧いただけます。試験済みの波長に基づいて半導体レーザを選んでいただくことも可能ですので、詳細は当社までお問い合わせください。
レーザーモードと線幅
当社では様々な出力特性(光出力値、波長、ビームサイズ、形状など)を有する半導体レーザをご提供しております。このページに記載のある半導体レーザの多くは単一横モード(シングルモードまたはSM)で、いくつかは高出力のマルチ横モード(マルチモードまたはMM)で動作するように設計されています。下記でご紹介している波長安定化体積型ホログラフィック回折格子(VHG)半導体レーザは優れたシングルモード特性を示します。 一部のシングルモードレーザは、限られた単一縦モード特性で動作します(詳細については下表をご覧ください)。さらに優れたサイドモード抑圧比(SMSR)を達成するには、DFBレーザやVHG安定化レーザ、DBRレーザ、外部共振器レーザ等のレーザの使用をお勧めしています。下表内で緑色に網掛けされている製品は、当社の単一周波数レーザです。当社のVHG安定化レーザ、DFBレーザ、DBRレーザ、そして外部共振器レーザは特に狭い線幅となっています(VHG安定化レーザとDFBレーザは≤20 MHz、DBRレーザと外部共振器レーザは< 100 kHz)。半導体レーザに関する一般的な説明と性能については半導体レーザーチュートリアルをご覧ください。
半導体レーザは静電気に対してデリケートな製品です。 製品の取扱い時には静電気に十分ご注意ください(当社の静電防止/ESD製品ページをご覧ください)。また、このレーザは戻り光にも敏感なため、用途によってはレーザの出力が大きく変動する可能性があります。 この問題は光アイソレータによって解決できる場合はありますのでご検討ください。半導体レーザの選択や動作上の問題点など、お気軽に当社までご連絡ください。
ピンコード

半導体レーザのピンコードにより、対応するマウントがわかります。尚、こちらの図は正確な配線図を示したものではありません。
Pin Code | Monitor Photodiode | Pin Code | Monitor Photodiode |
---|---|---|---|
A | Yes | E | No |
B | Yes | F | Yes |
C | Yes | G | No |
D | Yes | H | No |
半導体レーザに適したコリメート用レンズの選択
半導体レーザの出力光は大きく発散するため、コリメート用の光学素子が必要になります。非球面レンズは球面収差が生じにくいので、コリメート光のビーム径を1~5 mmにしたい場合は非球面レンズを用いるのが一般的です。ここでは目的の用途に適したレンズを選定する上での重要な仕様について、簡単な例をあげてご説明します。下の例2では、さらに楕円形のビームを円形化する方法を説明しています。
例1:発散光のコリメート
- 使用する半導体レーザ:L780P010
- 目標とするコリメート後のビーム径: Ø3 mm(長軸)
コリメート用レンズを選ぶときには、ご使用の光源の発散角と必要とする出射ビームの径を把握することが必要です。半導体レーザL780P010の仕様によると、水平方向と垂直方向の典型的なビーム発散角(FWHM)はそれぞれ8°と30°です。従って光が発散するにつれて、ビームは楕円形になっていきます。コリメートするときにできるだけ多くの光を集光するために、計算では2つの発散角のうちの大きい方の数値を使ってください(この場合は30°)。楕円ビームを円形化したい場合は、ビームの1軸方向を拡大するアナモルフィックプリズムペアの使用をお勧めします。詳細は下の例2をご覧ください。
レンズの厚さが曲率半径に比べて十分に薄いと仮定すると、薄レンズ近似を用いて非球面レンズの適切な焦点距離が求められます。発散角が30°(FWHM)、目標とするビーム径が3 mmと仮定します。
![]() | ![]() | ||
Θ = 発散角 | Ø = ビーム径 | f = 焦点距離 | r = コリメートされたビームの半径 = Ø/2 |
なお、一般に必要とする光源とレンズ間の距離に等しい焦点距離のレンズが存在するわけではありません。
これらの情報をもとに、適切なコリメート用レンズの選定をします。当社では様々な種類の非球面レンズをご用意しています。この使用例における理想的なレンズは、780 nmに対応した-B反射防止コーテイングが施された、焦点距離が約5.6 mmのモールドレンズです。非球面レンズのC171TMD-B(マウント付き)や354171-B(マウント無し)の焦点距離は6.20 mmなので、その場合のコリメート後のビーム径(主軸)は3.3 mmになります。次に半導体レーザの開口数(NA)がレンズのNAより小さいことを確認します。
0.30 = NALens > NADiode ≈ sin(15°) = 0.26
ここまで、ビームの特性を表すのにビームの半値全幅(FWHM)を用いてきました。しかし、より優れた方法は1/e2ビーム径を用いることです。ガウシアンビームプロファイルにおいては、1/e2ビーム径の方が半導体レーザの出力光をより多く捕捉することになり(光パワーの利用率向上)、さらにファーフィールド回折も最小限に留められます(入射光のケラレが少ないため)。
経験則として、レーザーダイオードのNAの2倍のNAを有するレンズを選ぶのが良いとされています。例えばA390-BやA390TM-BのNAはいずれも0.53で、これは半導体レーザのNA(0.26)の約2倍です。なお、これらのレンズの焦点距離は4.6 mmで、楕円ビームの長径は約2.5 mmになります。一般に、焦点距離の短いコリメート用レンズを使用すると、コリメート光の径は小さくなり、ビーム発散角は大きくなります。これに対して、焦点距離の長いコリメート用レンズを使用するとコリメート光の径は大きくなり、ビーム発散角は小さくなります。
例2:楕円ビームを円形化する方法
上で選択した半導体レーザと非球面レンズに、当社のアナモルフィックプリズムペアを使用して、コリメートされた楕円ビームを円形ビームに変換することができます。

例1では大きい方の発散角しか見ませんでしたが、今度は小さい方の発散角を見ます。例1で選んだ非球面レンズA390-Bの有効焦点距離を用いて、コリメート後の楕円ビームの短半径を求めることができます。
r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm
短軸のビーム径は短半径の2倍で0.64 mmとなります。短径を長径と同じ2.5 mmまで長くするには、アナモルフィックプリズムペアを用いて3.9倍に拡大する必要があります。当社ではマウント付きとマウント無しのプリズムペアをご用意しております。マウント付きのプリズムペアは、安定な筐体のために、アライメントを維持しやすいという利点があります。一方、マウント無しのプリズムペアでは任意の角度に配置できるため、必要とする倍率に正確に設定することができます。
波長950 nmのビームに対するマウント付きプリズムペアPS883-Bの倍率は4.0倍です。波長が短いビームほどプリズムペアを通ったときの倍率は大きくなるため、波長が780 nmのビームでは4.0倍よりも若干大きくなります。従って、ビームには小さな楕円率が残ることになります。
一方、マウント無しプリズムペアPS871-Bを使用すると、円形ビームにするのに必要な短軸の倍率を正確にセットすることができます。こちらのデータを使用すると、波長670 nmのビームの場合にはPS871-Bを下記の角度に配置すると4.0の倍率が得られることが分かります。
α1: +34.608° | α2: -1.2455° |
α1およびα2の定義については右の図をご覧ください。780 nmレーザがこの角度でプリズムを通ると、倍率は670 nmのビームよりも若干小さくなります。正確な倍率にするには、ある程度の試行錯誤が必要な場合があります。一般的な方法は下記のとおりです。
- 倍率を上げるには、1つ目のプリズムを時計回りに回し(α1増大)、2つ目のプリズムを反時計回りに回します(α2減少)。
- 倍率を下げるには、1つ目のプリズムを反時計回りに回し(α1減少)、2つ目のプリズムを時計回りに回します(α2増大)。
なお、プリズムペアでは入射ビームと出射ビームの間にオフセットが生じ、このオフセットは倍率を大きくするほど大きくなることにご留意ください。
Video Insight(How-to動画): TO-Can型半導体レーザのセットアップ
TO-Can型半導体レーザをマウント内に取り付けて、温度と電流の制御下で動作するように設定する際、誤ってレーザに損傷を与えたり破損したりする可能性が多くあります。このガイドでは、人体と半導体レーザを損傷の危険から守る方法を順を追ってご説明しています。
仕様の範囲内でご使用いただく限り、半導体レーザの製品寿命は非常に長いものです。ほとんどの故障は、不適切に取り扱われた場合や最大定格値を超えて動作した場合に生じています。半導体レーザは非常に静電気に敏感なデバイスであるため、取り扱う際は適切な静電気防止製品を使用する必要があります。静電気に非常に敏感なため、半導体レーザはパッケージ開封後の返品を受け付けておりません。未開封の場合のみ全額返金いたします。
取扱いならびに保管に関する注意点
半導体レーザは、静電気放電(ESD)による損傷の可能性が非常に高いため、取扱い時は以下の点にご注意ください。
リストストラップ
半導体レーザを取り扱う際には、必ず接地用ESDリストストラップをご使用ください。
静電気防止マット
常に接地用ESDマットの上で作業してください。
半導体レーザの保管
使用していない時はレーザのリード端子を短絡させると静電気放電による損傷を防ぐことが出来ます。
使用上の安全遵守事項
適切なドライバの使用
半導体レーザを使用するときは、オーバードライブを防止するためにも駆動電流と電圧を精密に制御する必要があります。またレーザードライバは、電源ラインのサージ等の過渡的で急激な変化を吸収し、半導体レーザを守ります。用途に応じたレーザードライバをお選びください。汎用的な電流制限抵抗器付きの定電圧電源(直流電源)は、半導体レーザを防御するのに十分な制御機能が備わっていないのでご使用にならないでください。
パワーメータ
半導体レーザと電流電源(ドライバ)を組み合わせた系のレーザ出力を較正する際には、NISTトレーサブルなパワーメータを使用してレーザの出力を正確に計測してください。通常、半導体レーザを光学系に組み込む前に、レーザの出力を直接計測するのがもっとも安全です。これができない場合には、レーザ直後の出力を推定する際、必ず光損失(伝送損失や開口絞りなど)を考慮してください。
反射について
半導体レーザの前方にある光学系の中にレーザに対面するような平面があると、レーザーエネルギの一部分が反射され、レーザ内のモニタ用フォトダイオードに戻ってしまい、誤った高いフォトダイオード電流値が計測される場合があります。その状態でシステム内の光学部品が移動され、モニタ用フォトダイオードへのエネルギの後方反射がなくなった場合、光出力を一定に維持するフィードバックループがフォトダイオード電流の低下を感知します。その結果、レーザードライバの電流を上げる制御が自動的に行なわれ、半導体レーザのオーバードライブにつながる可能性があります。後方反射はその他にも故障や半導体レーザの損傷を招くことがあります。これを防ぐため、光学部品のすべての面を光軸に対して5~10°の角度で傾けるように配置してください。また必要に応じて光アイソレータを使用し、レーザへの直接的なフィードバックを減衰するようにしてください。
ヒートシンク
半導体レーザの寿命は動作温度に対して反比例します。半導体レーザは必ず適切なヒートシンクを取り付けてレーザーパッケージから余分な熱を除去してください。
電圧ならびに電流のオーバードライブについて
各半導体レーザの仕様書に記載されている最大電圧ならびに電流を一時的にでも超えないようご注意ください。また、逆方向電圧については3 Vでも半導体レーザを損傷する可能性があります。
静電気放電(ESD)に敏感なデバイス
半導体レーザは駆動時であってもESDによる損傷を受けやすいデバイスです。静電気放電によるダメージは、半導体レーザとドライバ間に使用するインターフェイスのケーブルを長くしている場合、インダクタンスによりさらに起こりやすくなります。半導体レーザならびに半導体レーザを取り付けた機器を静電気にさらさないよう常にご注意ください。
ON/OFF時ならびに電源ラインを共通にする他の機器に起因する過渡現象
半導体レーザは応答が高速なため、 1 µs未満の過渡電流でもダメージを受ける場合があります。はんだごて、真空ポンプ、蛍光ランプなどの高電流機器の使用時には過渡的に過大な負荷がかかる場合があります。そのため半導体レーザを駆動する際は必ずサージ防止付きコンセントをご使用ください。
半導体レーザについてご質問がございましたら当社までお問い合わせください。
レーザの安全性とクラス分類
レーザを取り扱う際には、安全に関わる器具や装置を適切に取扱い、使用することが重要です。ヒトの目は損傷しやすく、レーザ光のパワーレベルが非常に低い場合でも障害を引き起こします。当社では豊富な種類の安全に関わるアクセサリをご提供しており、そのような事故や負傷のリスクの低減にお使いいただけます。可視域から近赤外域のスペクトルでのレーザ発光がヒトの網膜に損傷を与えうるリスクは極めて高くなります。これはその帯域の光が目の角膜やレンズを透過し、レンズがレーザーエネルギを、網膜上に集束してしまうことがあるためです。
安全な作業および安全に関わるアクセサリ
- クラス3または4のレーザを取り扱う場合は、必ずレーザ用保護メガネを装着してください。
- 当社では、レーザのクラスにかかわらず、安全上無視できないパワーレベルのレーザ光線を取り扱う場合は、ネジ回しなどの金属製の器具が偶然に光の方向を変えて再び目に入ってしまうこともあるので、レーザ用保護メガネを必ずご使用いただくようにお勧めしております。
- 特定の波長に対応するように設計されたレーザ保護眼鏡は、装着者を想定外のレーザ反射から保護するために、レーザ装置付近では常に装着してください。
- レーザ保護眼鏡には、保護機能が有効な波長範囲およびその帯域での最小光学濃度が刻印されています。
- レーザ保護カーテンやレーザー安全保護用布は実験室内での高エネルギーレーザの遮光にご使用いただけます。
- 遮光用マテリアルは、直接光と反射光の両方を実験装置の領域に封じ込めて外に逃しません。
- 当社の筺体システムは、その内部に光学セットアップを収納し、レーザ光を封じ込めて危険性を最小限に抑えます。
- ピグテール付き半導体レーザは、他のファイバに接続、もしくは他のファイバとの接続を外す際には、レーザ出力をOFFにしてください。パワーレベルが10 mW以上の場合には特にご注意ください。
- いかなるビーム光も、テーブルの範囲で終端させる必要があります。また、レーザ使用中には、研究室の扉は必ず閉じていなければなりません。
- レーザ光の高さは、目線の高さに設定しないでください。
- 実験は光学テーブル上で、全てのレーザービームが水平を保って直進するように設定してください。
- ビーム光路の近くで作業する人は、光を反射する不要な装飾品やアクセサリ(指輪、時計など)をはずしてください。
- レンズや他の光学装置が、入射光の一部を、前面や背面で反射する場合がありますのでご注意ください。
- あらゆる作業において、レーザは必要最小限のパワーで動作するようにご留意ください。
- アライメントは、可能な限りレーザの出力パワーを低減して作業を行ってください。
- ビームパワーを抑えるためにビームシャッタや フィルタをお使いください。
- レーザのセットアップの近くや実験室には、適切なレーザ標識やラベルを掲示してください。
- クラス3Rやクラス4のレーザ(安全確保用のインターロックが必要となるレーザーレベルの場合)で作業する場合は、警告灯をご用意ください。
- ビームトラップの代用品としてレーザービュワーカードを使用したりしないでください。
レーザ製品のクラス分け
レーザ製品は、目などの損傷を引き起こす可能性に基づいてクラス分けされています。国際電気標準会議(The International Electrotechnical Commission 「IEC」)は、電気、電子工学技術関連分野の国際規格の策定および普及を行う国際機関で、IEC60825-1は、レーザ製品の安全性を規定するIEC規格です。レーザ製品のクラス分けは下記の通りです
Class | Description | Warning Label |
---|---|---|
1 | ビーム内観察用の光学機器の使用を含む、通常の条件下での使用において、安全とみなされているクラス。このクラスのレーザ製品は、通常の使用範囲内では、人体被害を及ぼすエネルギーレベルのレーザを発光することがないので、最大許容露光量(MPE)を超えることはありません。このクラス1のレーザ製品には、筐体等を開かない限り、作業者がレーザに露光することがないような、完全に囲われた高出力レーザも含まれます。 | ![]() |
1M | クラス1Mのレーザは、安全であるが、望遠鏡や顕微鏡と併用した場合は危険な製品になり得ます。この分類に入る製品からのレーザ光は、直径の大きな光や拡散光を発光し、ビーム径を小さくするために光を集束する光学素子やイメージング用の光学素子を使わない限り、通常はMPEを超えることはありません。しかし、光を再び集光した場合は被害が増大する可能性があるので、このクラスの製品であっても、別の分類となる場合があります。 | ![]() |
2 | クラス2のレーザ製品は、その出力が最大1 mWの可視域での連続放射光に限定されます。瞬目反射によって露光が0.25秒までに制限されるので、安全と判断されるクラスです。このクラスの光は、可視域(400~700 nm)に限定されます。 | ![]() |
2M | このクラスのレーザ製品のビーム光は、瞬目反射があるので、光学機器を通して見ない限り安全であると分類されています。このクラスは、レーザ光の半径が大きい場合や拡散光にも適用されます。 | ![]() |
3R | クラス3Rのレーザ製品は、直接および鏡面反射の観察条件下で危険な可視光および不可視光を発生します。特にレンズ等の光学機器を使用しているときにビームを直接見ると、目が損傷を受ける可能性があります。ビーム内観察が行われなければ、このクラスのレーザ製品は安全とみなされます。このクラスでは、MPE値を超える場合がありますが、被害のリスクレベルが低いクラスです。可視域の連続光のレーザの出力パワーは、このレベルでは5 mWまでとされています。 | ![]() |
3B | クラス3Bのレーザは、直接ビームを見た場合に危険なクラスです。拡散反射は通常は有害になることはありませんが、高出力のクラス3Bレーザを使用した場合、有害となる場合もあります。このクラスで装置を安全に操作するには、ビームを直接見る可能性のあるときにレーザ保護眼鏡を装着してください。このクラスのレーザ機器にはキースイッチと安全保護装置を設け、さらにレーザ安全表示を使用し、安全照明がONにならない限りレーザがONにならないようにすることが求められます。Class 3Bの上限に近いパワーを出力するレーザ製品は、やけどを引き起こすおそれもあります。 | ![]() |
4 | このクラスのレーザは、皮膚と目の両方に損傷を与える場合があり、これは拡散反射光でも起こりうるとみなされています。このような被害は、ビームが間接的に当たった場合や非鏡面反射でも起こることがあり、艶消し面での反射でも発生することがあります。このレベルのレーザ機器は細心の注意を持って扱われる必要があります。さらに、可燃性の材質を発火させることもあるので、火災のリスクもあるレーザであるとみなされています。クラス4のレーザには、キースイッチと安全保護装置が必要です。 | ![]() |
全てのクラス2以上のレーザ機器には、上記が規定する標識以外に、この三角の警告標識が表示されていなければいけません。 | ![]() |
Posted Comments: | |
MirPeyman Seyyedmohammadidizaj
 (posted 2025-03-19 13:06:01.1) Hi,
there is no information about spectral bandwidth in the datasheet.
kind regards 鹏 李
 (posted 2024-12-26 12:40:04.93) I used the ip500 laser driver to control the laser diode HL6738MG. In IP500, JMP1 is setting at CG and JMP2 is setting at APC . and I found that the alarm light was always on. Why? ksosnowski
 (posted 2024-12-26 12:43:23.0) Thank you for reaching out to us. Our IP500 driver can run this laser however there are a few conditions which can result in the driver alarm. If there is any fault in the wiring to the laser, or if the laser is connected in reverse polarity, it is difficult for the driver to pass current through the laser and the driver will reach it's forward voltage limit in attempt to meet the commanded drive level. When this limit is met and the current flow is not satisfied, an alarm is presented to show the user of an open circuit fault. CG configuration is correct for this laser but it is worth double checking the driver pinout and laser pin orientation to make sure these are not connected in reverse. I have reached out directly to troubleshoot your setup further. 家維 劉
 (posted 2024-11-21 00:05:35.037) I want to know about the bandwidth of this laser diode ksosnowski
 (posted 2024-11-20 01:33:06.0) Thanks for reaching out to us. L650P007's specification sheet has a sample spectrum from this laser. We do not specify an exact spectral bandwidth for this device, as the spectrum is not single mode and will depend on operating conditions like drive current and case temperature. Most laser diodes can be modulated with rise times less than 1 nanosecond however the driving electronics are the primary limiting factor in the modulation bandwidth of a laser system. Our LDC205C has the fastest direct modulation bandwidth at 250kHz however with some laser mounts like LDM56, a faster RF signal generator can be used in addition to a slower source like LDC series to extend the analog modulation range up to 600MHz. The LDM56's RF electrical power limits can limit this modulation depth for higher current lasers, however L650P007 has a relatively low maximum current level. user
 (posted 2024-10-15 14:41:55.807) Is this laser diode TM or TE polarized? mgarodia
 (posted 2024-10-16 01:36:31.0) Thank you for reaching out to us. The laser diode is TE-polarized. gokhan zengin
 (posted 2024-10-04 11:55:12.723) I want to order L904P010 laser diode and driver for this diode.Do you have driver for this laser diode as well (12 vdc) jpolaris
 (posted 2024-10-04 07:38:26.0) Thank you for contacting Thorlabs. I have reached out to you directly to discuss which mounting and driving options would be most suitable to the needs of your application. Our selection of laser diode current controllers can be found at the following link: https://www.thorlabs.com/navigation.cfm?guide_ID=112 YOUNGIN YU
 (posted 2024-08-14 19:10:30.76) Quantity: 1 piece
1. Is it possible to ship to South Korea?
2. If so, how long does it take to ship?
3. What is the payment method?
4. Do I need to enter my personal customs code when ordering? cdolbashian
 (posted 2024-08-26 09:03:14.0) Thank you for reaching out to us with this inquiry. We do have a distributor in South Korea, Jinsung Instruments. Our international distributors can be found on our website here (https://www.thorlabs.com/distributors.cfm). I have reached out to you directly to share their contact information, as well as address some of your other concerns. JINSEO PARK
 (posted 2024-08-06 15:07:26.323) Dear Thorlabs,
Hi, I'm Jinseo Park working on the Yonsei Univ. Lab.
I'm writing the mail to give your technical support for L650P007.
I'm doing the experiment with it, and I need 'Beam profile' of this LD.
I thought it would have gaussian profile, but it has double peaks.
I'm using EK1101/EK1102 driver purchased on Thorlabs.
If I should contact another route, please let me know.
Thank you,
Jinseo Park cdolbashian
 (posted 2024-08-14 11:07:53.0) Thank you for reaching out to us with this inquiry. The beam profile should certainly be single peaked Gaussian mode. I have contacted you directly to understand, more clearly, your implementation. user
 (posted 2024-05-06 19:04:48.3) 您好,我们想购买贵公司的L780P010的激光二极管制作776nm的激光器,目前对你们的产品有一些疑惑。
1、它是通过什么方式来调谐波长的(温度、工作电流或其他?)
2、它能用于制作外腔式半导体激光器中的LD吗?
以上就是我对疑惑,希望能得到你们的回复。谢谢! cdolbashian
 (posted 2024-05-24 10:31:29.0) Thank you for reaching out to us with these inquiries. Roughly translated your inquiries are as follows.1. How does it tune the wavelength (temperature, operating current or other?)
2. Can it be used to make LDs in external cavity semiconductor lasers?
The temperature tunability of this component is not exact, but can be found to approximately follow the rule of 0.20-0.25nm/°C. Regarding your second question, this is not a gain chip, so I do not think this could be used as you are indicating. We have contacted you directly to discuss your application and intents further. Jay Lin
 (posted 2023-12-25 18:09:52.63) I bought L840P200 few months ago and I would like to know if the coating of the laser mirror in the cavity has some kind of narrow band coating or not? Typically the regular multi longitudinal mode laser diode has wider spectral linewidth, but these products has the linewidth of around 60MHz, so I think the cavity mirror is not regular low reflectivity mirror. jpolaris
 (posted 2024-01-02 05:02:35.0) Thank you for contacting Thorlabs. Unfortunately, design details such as the presence of any narrowband coatings and cavity mirror reflectivity/ finesse are considered proprietary. I have reached out to you directly to discuss this topic further. lijiong shen
 (posted 2023-07-07 17:38:48.27) I saw many opnext laser diodes written as single frequency for example HL6501MG, is it real Single longitudinal mode laser and what is the linewidth? cdolbashian
 (posted 2023-07-14 04:35:11.0) Thank you for reaching out to us with this inquiry. Indeed this is both a single longitudinal mode and single transverse mode. We are planning to make this information a bit more explicit on the page in the near future. I have contacted you directly to discuss this. Brady Paradis
 (posted 2023-03-14 14:33:54.35) Hi,
Do you have recommended replacements or an ability to purchase some of these even though they are obsolete?
Thanks,
Brady jdelia
 (posted 2023-03-16 08:25:22.0) Thank you for contacting Thorlabs. I have reached out to you directly regarding the feasibility of ordering the L405P150 diode. Matthew Bissen
 (posted 2023-03-02 21:01:20.38) Hello Thorlabs,
I'm from a company in the Bay Area called Adventurous Sports. We're working on an online class package for kids 10+. It's a lazermaze at home project where the kids get to assemble their own laser and make an obstacle course around their home. We're looking to combine the following products and I was curious how much it would cost for Thorlabs to do it:
5m@ Laser Diode Red 3 Volt with De Anza plug, with an longer tougher plug to fit into a breadboard. Do you think you would be able to do anything like that?
Operations Manager,
Matthew Bissen ksosnowski
 (posted 2023-03-08 02:32:21.0) Hello Matthew, thanks for reaching out to Thorlabs. For this type of project I would suggest checking out our compact laser series like CPS635, PL202, and PL204. The CPS series uses a 2.5 mm phono-jack plug, and the PL series comes with a USB connector for power or with bare-wire leads options if you want to connect to your own power supply. These lasers come pre-collimated as well, while our bare laser diodes require additional lenses to create a parallel beam of output rays. We do not have any special plug options on the lasers, however are 2.5mm receptables commonly available and you can add some a breakout board, or the bare-wire option would allow any connector to be used. As lasers are sensitive to polarity, I would recommend using a polarized plug to avoid accidentally attaching the laser in reverse which can lead to damage. I have reached out directly to discuss this application further. user
 (posted 2022-11-02 10:31:04.38) Dear Sir/Madam!
We recently have purchased a HL6358MG TO Can 5.6 mm laser diode from you. We have a question about cleaning of the protecting glass of the laser diode module: which material is made from? Could you provide us a suggestion about the proper cleaning process (e. g. could we clean the glass with alcohol)?
If alcohol must be not used, what is the recommended material/method?
Thank you very much for advance!
Attila Andrásik
Semilab Zrt cdolbashian
 (posted 2022-11-08 01:56:43.0) Thank you for reaching out to us Attila. These diodes are from a vendor, and they do not share the window material with us. That being said, these diodes are ideally hermetically sealed, so they should be sealed against air and any solvent used on the surface. We would recommend using a similar cleaning procedure as cleaning a standard optic via our guide here:https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9025 Samuel Gebretsadkan
 (posted 2022-08-28 00:27:05.9) Is this diode AR coated? I couldn't find any information in the datasheet. cdolbashian
 (posted 2022-09-16 09:50:23.0) Thank you for reaching out to us! The facet is likely AR-coated, but not less than <1% reflectivity. If you intend to use this to build an external cavity laser, this is not designed to be used as an external gain chip. The window itself is certainly AR-coated, likely <0.25%. I have reached out to you directly to discuss this further. Marija Ćurčić
 (posted 2022-06-30 11:05:01.94) Dear Sir/Madam,
Could you please give me an information on whether the orientation of a laser diode is in any way related to the light polarization? Is the orientation of a pin on a bottom of a housing important for the output polarization?
Thank you in advance.
Best regards,
Marija Curcic
Institute of Physics Belgrade, Serbia jdelia
 (posted 2022-08-02 02:33:56.0) Thank you for contacting Thorlabs. The polarization direction will be along the long side of the chip. The long edge is nominally aligned to the 45 degree identification tab on the TO-can. However, this is a manual process so that alignment is not controlled and, therefore, we do not specify a tolerance for the alignment of the polarization axis. user
 (posted 2022-05-09 07:04:04.493) Hi, I have bought a M9-808-0150 diode to be used with the driver LD1255R. With a first test we obtained a power of 150 mW, but in a second test the power did not go higher than 10 mW, using a current close to the diode limit (200 mA). We do not know the cause of this malfunction. You could guide us with a solution or identifying the fault. Thanks a lot. cdolbashian
 (posted 2022-05-27 12:38:17.0) Thank you for reaching out to us. Based on our conversations, it seems like the device was potentially damaged due to insufficient cooling. I have reached out to you directly to discuss strategies to lengthen the lifetime of your active optical instrumentation. For future troubleshooting inquiries, please contact Techsupport@thorlabs.com. maomao zeng
 (posted 2022-02-11 11:34:31.55) Beam Deviation Angle 和 Beam Divergence两项参数的具体意义和区别是什么呢? cdolbashian
 (posted 2025-01-27 04:42:27.0) Thank you for reaching out to us with this inquiry. The former, Beam deviation, refers to the pointing angle of the laser, while the latter, beam divergence, refers to the angular spread in the parallel and perpendicular directions with respect to the pointing direction of the beam. user
 (posted 2021-12-25 04:38:58.63) this diode using agfa aventra imgesetter 44 cdolbashian
 (posted 2021-12-28 01:51:26.0) Thank you for reaching out to us with your laser diode inquiry. I have reached out to you directly to discuss your application. Narae Bae
 (posted 2021-10-18 14:38:00.27) 1064 nm Fabry-Perot Laser Diode, 200 mW
I want to know the graph (the ouput power of input current)
X: input current(mA)
Y: output power(mW) YLohia
 (posted 2021-12-22 02:56:11.0) Thank you for contacting Thorlabs. I have reached out to you with an LIV curve of the M9-A64-0200. This data can be requested by emailing techsupport@thorlabs.com. Edmond Wilson
 (posted 2021-10-16 14:54:15.74) I have 6 of these diode lasers and I use them for my Raman Spectrometer that I built. I am very happy with the laser and it exceeded my expectations because it produces 130 mW of optical power. Of course, I could use a more powerful laser. But in order to get a single mode diode laser that was more powerful. it would be much more expensive. YLohia
 (posted 2021-12-22 02:56:09.0) Hello, thank you for your feedback on this laser. We're quite happy to hear that it has exceeded your expectations. We will consider your comments about what an ideal laser for your application be as we release more laser diodes in the future. user
 (posted 2021-09-28 12:07:54.403) Dear Sir/Madam, I have bought a LD785-SH300 diode from your company, but somehow I lost the spec of it. The serial number is 785P300CK34.D04. Could you please offer me the specifications, like the center wavelength, wavelength VS temperature and so on? Thanks a lot! YLohia
 (posted 2021-10-11 02:51:05.0) Hello, thank you for contacting Thorlabs. The serialized spec sheet for LD785-SH300 (S/N 785P300CK34.D04) can be accessed here: https://www.thorlabs.com/Thorcat/SerialNumbers/LD785-SH300/LD785-SH300-785P300CK34.D04_FT.pdf. TATING TSAO
 (posted 2021-07-23 16:54:16.777) ML620G40 spec中說明符合IEC 60825-1,請問有通過此證明的電子檔可以提供? YLohia
 (posted 2021-07-26 11:18:48.0) Hello, the IEC 60825-1 requirements documentation can be accessed here on IEC's official website: https://webstore.iec.ch/publication/3587 Alvin KANG
 (posted 2021-07-22 17:44:17.613) Hi,
We would like to check whether this combination of things can work properly:
1. L450P1600MM
2. S7060R
3. SR9F (or SR9HF?)
Thanks. YLohia
 (posted 2021-07-29 02:12:07.0) Hello, thank you for contacting Thorlabs. We strongly discourage using the L450P1600MM with S7060R and SR9HF (HF because of the high compliance voltage requirement of this laser) because of the significantly reduced lifetime and output power due to lack of active cooling when using with this cable and/or socket. Instead, we suggest using the LDM56 mount with a temperature controller (TED200C). Yu-Pu LIN
 (posted 2021-05-18 02:52:06.63) Dear Sirs,
Do you have an idea of the rise/fall time of your 1370nm laser ? (L1370G1)
Thank you very much!
Best regards,
Yu-Pu LIN YLohia
 (posted 2021-05-19 01:34:32.0) Hello Yu-Pu, I have reached out to you directly regarding this. I-Yun Chen
 (posted 2021-03-11 13:04:29.437) Hello. We used L520P50, but we want to automatically drive its operating current back and forth to achieve different power. Is this possible for L520P50? Or do you have any recommendation? YLohia
 (posted 2021-03-12 03:39:10.0) Hello, are you asking if it is possible to operate the L520P50 in a constant power mode at various set power levels? If so, the answer is yes, but will ultimately depend on the specs of your current driver. For example, our LDC205C driver can support such a mode. Please see page 15 of the manual: https://www.thorlabs.com/_sd.cfm?fileName=15988-D02.pdf&partNumber=LDC205C I-Yun Chen
 (posted 2021-01-19 03:53:22.743) Hello. We used DL5146-101S as a light source in our experiment. However, we have observed that after operating for 3 hours, the power of the laser seems to be drifting(the power becomes larger and larger). I wonder if there is any solution to this problem. Thanks a lot. YLohia
 (posted 2021-01-19 03:23:50.0) Hello, how much is the power drifting over time? Usually, such effects can be attributed to the lack of active cooling and/or improper heat-sinking. I have reached out to you directly to troubleshoot further. Josefine Lemke
 (posted 2020-10-22 06:39:12.87) L785 SH300 - what is the recommended operating temperature? In the spec sheet it is "20 - 50°C" but there is one small additional note that says T_CHIP=25°C. What is T_CHIP? Thank you, Josefine YLohia
 (posted 2020-10-22 01:46:55.0) Hello Josefine, thank you for contacting Thorlabs. T_Chip is the temperature of the laser diode chip (not case). All specs are taken at a chip temperature of 25 C. This can be considered the "recommended" operating temperature for most applications. Some applications may require slight differences in the output spectrum, which can be tuned by changing the temperature of the chip. For example, the temperature tuning coefficient of the LD785-SH300 is on the order of 0.20-0.25 nm/C. michael lee
 (posted 2020-09-10 13:12:20.473) L405P150 - 405 nm, 150 mW is a laser we want to try in our CBRNE instrument, but we need a different form factor. We are looking for 5.6mm - B package. Is this something you can do for us, without costing too much? YLohia
 (posted 2020-09-11 09:05:33.0) Thank you for contacting Thorlabs. We offer the DL5146-101S 405 nm laser diode in a 5.6 mm package. I have reached out to you directly to discuss the possibility of getting a custom laser. Mark Frederick
 (posted 2020-09-08 20:42:37.227) What is the window thickness of the L638P200? YLohia
 (posted 2020-09-09 11:18:57.0) Thank you for contacting Thorlabs. The window thickness for the L638P200 is ~0.25 mm. mohiniv. sontakke
 (posted 2020-07-30 04:44:26.697) Actually, I really wanted to know it's side-effects! Specifically, is it harmful for human? What's the time one can stay expose to certain laser! Is it harmful, do answer my queries!
Eagerly waiting for your reply😊 YLohia
 (posted 2020-07-30 03:37:05.0) Hello, thank you for contacting Thorlabs. We suggest contacting your local Laser Safety Officer (LSO) for accurate information regarding laser safety and human health. David Lowndes
 (posted 2020-06-11 07:30:49.667) Could you please advise the materials of the TO56 packages? YLohia
 (posted 2020-06-16 08:22:05.0) Thank you for contacting Thorlabs. We have reached out to you directly to discuss this. Warren Massey
 (posted 2020-01-08 13:15:34.467) Have you got anything like (package, wavelength, power) an L637P5 but with pin code "G"? In our application we cannot tolerate the connection of the circuit to the case of the diode. YLohia
 (posted 2020-01-08 02:07:22.0) Thank you for contacting Thorlabs. We offer the HL63133DG, which has a 170 mW typical output power, G pin code, and 5.6 mm package. Juwan Kim
 (posted 2020-01-07 00:24:10.747) Do you have any products with specially enhanced temperature characteristics?
I'm looking for a product that meets the specifications below.
1. Visible LD: 50 mw or higher, CW, temperature -40 to 50
2. Infrared LD: 200 mW or higher, CW, temperature -40 to 50 YLohia
 (posted 2020-01-07 11:37:55.0) Thank you for contacting Thorlabs. I have reached out to you directly to discuss possible solutions. Channarong Asavathongkul
 (posted 2019-11-18 02:36:04.657) L462P1400MM has been discontinued, what is the replacement product? YLohia
 (posted 2019-11-18 11:12:58.0) Thank you for contacting Thorlabs. The closest alternative to this item is the L450P1600MM. Steve Russell
 (posted 2019-11-15 14:08:06.383) Can you tell me what the electrical frequency response of this particular laser diode is? I never see this spec in any laser spec sheet of any type. YLohia
 (posted 2019-11-20 11:19:56.0) Hello, thank you for contacting Thorlabs. Unfortunately, we do not measure this parameter and it is hard to guarantee a certain level of performance as it varies between different pieces. Each diode would have to be individually tested in order to provide an accurate representation of the frequency response. That being said, we expect that the L850P010 can be modulated >100 MHz with the proper drive electronics. Ana R
 (posted 2019-10-18 17:51:38.667) Hi,
I have an L785H1 diode that I'm setting up as part of an ECDL. The specifications state that the threshold current should be around 50 mA, but I'm getting just above 25 mA free-running. Is this something to be concerned about? YLohia
 (posted 2019-10-18 02:49:38.0) Hello, thank you for contacting Thorlabs. A lower threshold current is not a cause for concern. We specify the typical threshold current to be 50 mA, but we do not specify a lower bound as this can vary and is not seen as a defect. user
 (posted 2019-10-17 09:26:55.633) Hello, do you provide tolerance data regarding the positioning (x y z & tilt) of these TO-46, TO-56, TO-90 packages ? What should be the most reliable reference surface ? (package cylinder diameter, cylinder front face, support back or front plane ?) YLohia
 (posted 2019-10-17 11:16:56.0) Hello, we do not provide this tolerance data as some of the laser diodes on this page are sourced from other manufacturers (these diodes have original manufacturer spec sheets on this page) and these tolerances are not consistent. I will reach out to you directly to discuss your requirements further. user
 (posted 2019-07-23 04:04:08.233) What is the lifetime characteristics of laser diode L520G1, particularly MTBF? YLohia
 (posted 2019-08-07 10:00:19.0) Hello, thank you for contacting Thorlabs. I have reached out to you directly with this information. user
 (posted 2019-06-24 03:51:37.793) Is it possible to order a HL6312G diode with a lasing wavelength known more accurately than the 625 - 640 nm range given by the data sheet ? YLohia
 (posted 2019-06-24 09:39:17.0) Hello, thank you for contacting Thorlabs. Unfortunately, these laser diodes are not tested individually for wavelength. You can, however, purchase one of the LPS-635-FC pigtailed diodes, which are individually tested for wavelength and power. PHANI PEDDIBHOTLA
 (posted 2019-06-10 10:28:24.897) Hello,
I bought L520P50 from Thorlabs. May I know the company which manufactures this diode? I am looking for a diode with TO56 package with a wavelength from 521-575 nm.
Best Regards,
Phani. Vladimir Makarov
 (posted 2019-05-30 15:28:02.717) Hello, I am using the PL450B laser diode as a point illumination source. Could you tell me what the length and width of the emission area is? In other words, the size of the area on the facet of the laser where the light is emitted. YLohia
 (posted 2019-05-30 04:37:22.0) Hello, the emitter width for this laser diode is 1.5um x 1.0 um. user
 (posted 2019-04-30 09:57:39.64) Could you please suggest me a collimation tube for 3.8mm laser diodes like L405P150, PL520 or L638P150 and other 3.8mm Laser diodes?
thanks in advance.
ibrahim YLohia
 (posted 2019-04-30 09:29:13.0) Hello Ibrahim, thank you for contacting Thorlabs. Unfortunately, we currently do not offer collimation tubes for 3.8mm package size laser diodes. That being said, you can build your own collimation tube with the
S05LM38 adapter for 3.8mm diodes and using appropriate SM05 lens tubes and aspheric lenses. michael.fitch
 (posted 2018-11-16 16:47:18.98) About the HL6750, when I look at the manufacturers spec sheet in the link, it appears to be pin code A. But it is listed as pin code C. Could you please check the listing? mmcclure
 (posted 2018-11-19 10:09:53.0) Hello, thank you for your inquiry. The pin configuration for the HL6750MG laser diode corresponds to pin code C, as shown in both the manufacturer's spec sheet and the blue "info" icon on the website. Should you have additional questions, our tech support team will happily assist you. paul.nachman
 (posted 2018-07-11 12:09:32.84) The drawings you provide in this image ...
https://www.thorlabs.com/images/popupimages/HL8338MG_DWG.gif
... don't label the pin numbers in the pin diagram for comparison with the bottom view.
It's lucky that you make the manufacturer's data available ...
https://www.thorlabs.com/drawings/fd0e8f0902043f28-6AFA1F67-E78D-AFDC-C6C2BB53EE55033C/HL8338MG-MFGSpec.pdf
... else I would have guessed wrong. YLohia
 (posted 2018-07-12 09:57:42.0) Hello, thank you for your feedback and bringing this issue to our attention. We are currently working on making all drawings for this item more consistent with each other. chih.hao.li
 (posted 2018-05-23 08:53:36.27) Hi We are wondering if there is AR coating on the laser diode front window. If no, how much do you charge for an AR coated laser diode? Thank you! YLohia
 (posted 2018-05-23 05:07:46.0) Hello, thank you for contacting Thorlabs. The windows on laser diode cans are almost always AR coated. user
 (posted 2018-03-12 15:35:01.523) The PL450B pin connections reported in the Thorlabs selling packages and datasheets are different from the one reported in pag. 7 of the PL450B MFG Spec. YLohia
 (posted 2018-03-22 08:25:57.0) Hello, thank you for your feedback. We took a look at this and, while they are labeled differently, the pin connections are still the same. The only thing that is different here is that the arbitrary pin numbers (Pin 1 and Pin 3) are switched in designation. robert
 (posted 2017-10-11 16:29:34.97) It should be made clear to prospective buyers that these diodes are exceptionally sensitive to optically feedback. To quote the Thorlabs Tech Support staff "Our engineers that designed this told me that any reflection with more than 2% of the power will kill diode." That is not typical of laser diodes in this wavelength range. tcampbell
 (posted 2018-03-23 02:17:13.0) Hello, thank you for contacting Thorlabs. After discussing with our engineers, we have added a warning for select laser diodes on this page. Please feel free to contact us if you have concerns about any other products on our site. vg.buesaquillo
 (posted 2017-06-03 13:17:19.2) Do you can give me the spectrum of the diode laser DL5146-101S?
THANKS tfrisch
 (posted 2017-06-30 01:11:14.0) Hello, thank you for contacting Thorlabs. The spectrum will change because of differences from one production lot to another and because of differences in use, such as operating temperature and drive current. I will reach out to you directly to discuss your application. dmitry.busko
 (posted 2016-11-16 11:59:52.17) In a datasheet for M9-940-0200 there is no any information about the LD and PD pin connections. tfrisch
 (posted 2016-11-22 08:21:01.0) Hello, thank you for pointing out the missing circuit information. We will correct the spec sheet, but until then, if you are looking at the bottom of laser diode (pins pointing towards you), and the square cutout is down, the left pin is the Photodiode Anode, the center pin ties the Photodiode Cathode to the Laser Diode Anode and the case, and the right pin is the Laser Diode Cathode. mitch
 (posted 2016-06-18 08:50:58.713) Hi, I would like to drive the L850P010 fast. Initially I will be using your bias-T and driver, but I plan on designing my own bias-T for 2.4GHz operation. I was wondering if you could provide details on this laser diodes approximate impedance and more importantly it's capacitance? Thanks besembeson
 (posted 2016-06-22 08:50:15.0) Response from Bweh at Thorlabs USA: Such high speed modulation will not be suitable with this diode. You may want to consider a VCSEL instead and we don't have one for your application at this time. pedrueze
 (posted 2016-02-02 13:23:02.757) Hi all,
I have your profile current and temperature controller "Profile PRO 8000" with a combined module LD/TE controller ITC 8052.
(I can send by email the pics of them.)
I also have a laser diode L9805E2P5, (50 mW, 980 nm, A Pin code).
The problem is that I need to choose an appropiate Temperature Controlled Laser Diode Mount for it.
I was checking the TCLDM9 device. The problem is that the output of the controller is DB-15 (15 pins), and very close to it is the LD output of 9 pins.
It is better understood if you can see the pics.
I need to be sure which are the appropiate cables to connect between my controller and the TE mount, regarding the pin congiguration of my LD,
and if they have enough space to put in the module.
Could you please help me with that?
Thank you very much. besembeson
 (posted 2016-02-04 10:21:59.0) Response from Bweh at Thorlabs USA: The cables you would need will be the CAB400 for the laser control and CAB420-15 for the temperature controller. These can be found at the following page: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=966&pn=ITC8052 cmrogers
 (posted 2015-12-07 21:36:29.773) I am looking for is a diode centered near 656nm, with as a wide a gain bandwidth as possible, for use in an ECDL. What is the gain bandwidth of the relevant diodes that you sell?
Also, are any of your diodes AR coated?
Thanks! besembeson
 (posted 2015-12-08 10:14:54.0) Response from Bweh at Thorlabs USA: The Fabry Perot lasers that you would need for your wavelength of interest will typically have optical bandwidth in the 5-10nm range. The high power diode lasers, for example the HL6545MG are AR coated. pedrueze
 (posted 2015-10-12 11:42:15.523) Hello. I just recently bought one L9805E2P5 laser diode + a cable SR9A-DB9.
We have a current controller whose pin diagram could be find here:
http://assets.newport.com/webDocuments-EN/images/70041001_LDC-37x4C_IX.PDF
(see please page 17)
As you may see, doesn't match with the pins of the cable, so we must re-wired it.
My concern is which pins should I re-wire. In principle, I wired 3, 5 and 9 to use the laser diode, cathode, anode and ground chassis.
Is this correct/enough to make the laser emitting? should I connect the PD cathode and Anode as well? What is the use of anode/cathode voltage sense pins in the manual?
Concerning the temperature, I will use the laser at low-power (for alignement).
Thanks a lot for your help. jlow
 (posted 2015-10-12 04:55:23.0) Response from Jeremy at Thorlabs: At a minimum, you will want to connect Pin2 and Pin7 on the SR9A-DB9 to your controller. If you want to use the internal photodiode for feedback, you will want to connect Pin4 as well. I will contact you directly via e-mail to help with this. hmagh001
 (posted 2015-05-08 10:53:27.903) We just bought L808P200 for our lab and it is supposed to have a maximum power of 200 mW, and the spec. file of Laser diodes says that the threshold current is 100 mA. However, when I set the current to 80 mW from the LD controller (bought from thorlab as well, LDC220C) and measure the power with an optical power meter, it shows only 5 mW. I was wondering, how can we reach to higher power numbers with this laser diode.
Thanks,
Hadi. jlow
 (posted 2015-05-13 11:05:19.0) Response from Jeremy at Thorlabs: The threshold current is the current needed for the LD to lase. To get to the 200mW power, you would need to drive this near the operating current (somewhere between 220 to 300mA for the L808P200). Please use an optical power meter to measure the output power instead of relying just on the supplied current. Also, the light from the LD is divergent so please make sure your optical power meter will capture all the light from the LD to get an accurate reading. rssi_2nava
 (posted 2014-11-24 19:25:25.74) Hello guys,
i was hoping you can tell me the amplitude reflection coefficients of the diode rear and front faces of the L1060P100J laser diode, i can't find them anywhere and i need them to compute the transmision function of the diode cavity. I'll appreciate reading from you soon
Kind Regards jlow
 (posted 2014-12-11 01:30:49.0) Response from Jeremy at Thorlabs: The coating information on the chip facet is proprietary and is not something that we can provide. jimzambuto
 (posted 2014-10-03 11:13:51.5) For the diode part number L404P400M, what is the extent of the SLOW AAXIS. I am trying to design a collimator and the residual divergence caused by the extent of the laser facet in the slow or multimode direction is very important. jlow
 (posted 2014-10-13 09:05:41.0) Response from Jeremy at Thorlabs: You can find the far-field emission pattern/angle on page 3 of the MFG spec sheet in the supporting documents. The direct link is http://www.thorlabs.com/thorcat/QTN/L404P400M-MFGSpec.pdf. ar_1348
 (posted 2014-04-26 15:03:07.077) i need a driver for M5-905-0100 cdaly
 (posted 2014-05-08 02:58:52.0) Response from Chris at Thorlabs: This laser can be mounted in TCLDM9 and driven with LDC202C which can provide 200mA, covering the M5-905-0100's max operating current of 170mA. I'd suggest using a temperature controller as well, such as TED200C. t.meinert
 (posted 2014-01-08 08:36:55.39) ask for Quotation:
LD Type: DL 5146-101s
Quantity: 100pcs/a
1000pcs/a jlow
 (posted 2014-01-08 10:15:34.0) Response from Jeremy at Thorlabs: We will contact you directly to provide a quote. |
The rows shaded green below denote single-frequency lasers. |
Item # | Wavelength | Output Power | Operating Current | Operating Voltage | Beam Divergence | Laser Mode | Package | |
---|---|---|---|---|---|---|---|---|
Parallel | Perpendicular | |||||||
L375P70MLD | 375 nm | 70 mW | 110 mA | 5.4 V | 9° | 22.5° | Single Transverse Mode | Ø5.6 mm |
L404P400M | 404 nm | 400 mW | 370 mA | 4.9 V | 13° (1/e2) | 42° (1/e2) | Multimode | Ø5.6 mm |
LP405-SF10 | 405 nm | 10 mW | 50 mA | 5.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L405P20 | 405 nm | 20 mW | 38 mA | 4.8 V | 8.5° | 19° | Single Transverse Mode | Ø5.6 mm |
LP405C1 | 405 nm | 30 mW | 75 mA | 4.3 V | 1.4 mrad | 1.4 mrad | Single Transverse Mode | Ø3.8 mm, SM Pigtail with Collimator |
L405G2 | 405 nm | 35 mW | 50 mA | 4.9 V | 10° | 21° | Single Transverse Mode | Ø3.8 mm |
DL5146-101S | 405 nm | 40 mW | 70 mA | 5.2 V | 8° | 19° | Single Transverse Mode | Ø5.6 mm |
L405A1 | 405 nm | 175 mW (Min) | 150 mA | 5.0 V | 9° | 20° | Single Transverse Mode | Ø5.6 mm |
LP405-MF300 | 405 nm | 300 mW | 350 mA | 4.5 V | - | - | Multimode | Ø5.6 mm, MM Pigtail |
L405G1 | 405 nm | 1000 mW | 900 mA | 5.0 V | 13° | 45° | Multimode | Ø9 mm |
LP450-SF25 | 450 nm | 25 mW | 75 mA | 5.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L450G3 | 450 nm | 100 mW (Min) | 80 mA | 5.2 V | 8.4° | 21.5° | Single Transverse Mode | Ø3.8 mm |
L450G2 | 450 nm | 100 mW (Min) | 80 mA | 5.0 V | 8.4° | 21.5° | Single Transverse Mode | Ø5.6 mm |
L450P1600MM | 450 nm | 1600 mW | 1200 mA | 4.8 V | 7° | 19 - 27° | Multimode | Ø5.6 mm |
L473P100 | 473 nm | 100 mW | 120 mA | 5.7 V | 10 | 24 | Single Transverse Mode | Ø5.6 mm |
LP488-SF20 | 488 nm | 20 mW | 70 mA | 6.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP488-SF20G | 488 nm | 20 mW | 80 mA | 5.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L488P60 | 488 nm | 60 mW | 75 mA | 6.8 V | 7° | 23° | Single Transverse Mode | Ø5.6 mm |
LP515-SF3 | 515 nm | 3 mW | 50 mA | 5.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L515A1 | 515 nm | 10 mW | 50 mA | 5.4 V | 6.5° | 21° | Single Transverse Mode | Ø5.6 mm |
LP520-SF15A | 520 nm | 15 mW | 100 mA | 7.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP520-SF15 | 520 nm | 15 mW | 140 mA | 6.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L520A1 | 520 nm | 30 mW (Min) | 80 mA | 5.5 V | 8° | 22° | Single Transverse Mode | Ø5.6 mm |
PL520 | 520 nm | 50 mW | 250 mA | 7.0 V | 7° | 22° | Single Transverse Mode | Ø3.8 mm |
L520P50 | 520 nm | 45 mW | 150 mA | 7.0 V | 7° | 22° | Single Transverse Mode | Ø5.6 mm |
L520A2 | 520 nm | 110 mW (Min) | 225 mA | 5.9 V | 8° | 22° | Single Transverse Mode | Ø5.6 mm |
DJ532-10 | 532 nm | 10 mW | 220 mA | 1.9 V | 0.69° | 0.69° | Single Transverse Mode | Ø9.5 mm (non-standard) |
DJ532-40 | 532 nm | 40 mW | 330 mA | 1.9 V | 0.69° | 0.69° | Single Transverse Mode | Ø9.5 mm (non-standard) |
LP633-SF50 | 633 nm | 50 mW | 170 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL63163DG | 633 nm | 100 mW | 170 mA | 2.6 V | 8.5° | 18° | Single Transverse Mode | Ø5.6 mm |
LPS-635-FC | 635 nm | 2.5 mW | 70 mA | 2.2 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
LPS-PM635-FC | 635 nm | 2.5 mW | 60 mA | 2.2 V | - | - | Single Transverse Mode | Ø9 mm, PM Pigtail |
L635P5 | 635 nm | 5 mW | 30 mA | <2.7 V | 8° | 32° | Single Transverse Mode | Ø5.6 mm |
HL6312G | 635 nm | 5 mW | 50 mA | <2.7 V | 8° | 31° | Single Transverse Mode | Ø9 mm |
LPM-635-SMA | 635 nm | 8 mW | 50 mA | 2.2 V | - | - | Multimode | Ø9 mm, MM Pigtail |
LP635-SF8 | 635 nm | 8 mW | 60 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6320G | 635 nm | 10 mW | 60 mA | 2.2 V | 8° | 31° | Single Transverse Mode | Ø9 mm |
HL6322G | 635 nm | 15 mW | 75 mA | 2.4 V | 8° | 30° | Single Transverse Mode | Ø9 mm |
L637P5 | 637 nm | 5 mW | 20 mA | <2.4 V | 8° | 34° | Single Transverse Mode | Ø5.6 mm |
LP637-SF50 | 637 nm | 50 mW | 140 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP637-SF70 | 637 nm | 70 mW | 220 mA | 2.7 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL63142DG | 637 nm | 100 mW | 140 mA | 2.7 V | 8° | 18° | Single Transverse Mode | Ø5.6 mm |
HL63133DG | 637 nm | 170 mW | 250 mA | 2.8 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
HL6388MG | 637 nm | 250 mW | 340 mA | 2.3 V | 10° | 40° | Multimode | Ø5.6 mm |
L637G1 | 637 nm | 1200 mW | 1100 mA | 2.5 V | 10° | 32° | Multimode | Ø9 mm (non-standard) |
L638P040 | 638 nm | 40 mW | 92 mA | 2.4 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
L638P150 | 638 nm | 150 mW | 230 mA | 2.7 V | 9 | 18 | Single Transverse Mode | Ø3.8 mm |
L638P200 | 638 nm | 200 mW | 280 mA | 2.9 V | 8 | 14 | Single Transverse Mode | Ø5.6 mm |
L638P700M | 638 nm | 700 mW | 820 mA | 2.2 V | 9° | 35° | Multimode | Ø5.6 mm |
HL6358MG | 639 nm | 10 mW | 40 mA | 2.4 V | 8° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6323MG | 639 nm | 30 mW | 100 mA | 2.5 V | 8.5° | 30° | Single Transverse Mode | Ø5.6 mm |
HL6362MG | 640 nm | 40 mW | 90 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
LP642-SF20 | 642 nm | 20 mW | 90 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP642-PF20 | 642 nm | 20 mW | 110 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
HL6364DG | 642 nm | 60 mW | 120 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6366DG | 642 nm | 80 mW | 150 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6385DG | 642 nm | 150 mW | 250 mA | 2.6 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
L650P007 | 650 nm | 7 mW | 28 mA | 2.2 V | 9° | 28° | Single Transverse Mode | Ø5.6 mm |
LPS-660-FC | 658 nm | 7.5 mW | 65 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP660-SF20 | 658 nm | 20 mW | 80 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPM-660-SMA | 658 nm | 22.5 mW | 65 mA | 2.6 V | - | - | Multimode | Ø5.6 mm, MM Pigtail |
HL6501MG | 658 nm | 30 mW | 75 mA | 2.6 V | 8.5° | 22° | Single Transverse Mode | Ø5.6 mm |
L658P040 | 658 nm | 40 mW | 75 mA | 2.2 V | 10° | 20° | Single Transverse Mode | Ø5.6 mm |
LP660-SF40 | 658 nm | 40 mW | 135 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP660-SF60 | 658 nm | 60 mW | 210 mA | 2.4 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6544FM | 660 nm | 50 mW | 115 mA | 2.3 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
LP660-SF50 | 660 nm | 50 mW | 140 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6545MG | 660 nm | 120 mW | 170 mA | 2.45 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
L660P120 | 660 nm | 120 mW | 175 mA | 2.5 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
L670VH1 | 670 nm | 1 mW | 2.5 mA | 2.6 V | 10° | 10° | Single Transverse Mode | TO-46 |
LPS-675-FC | 670 nm | 2.5 mW | 55 mA | 2.2 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
HL6748MG | 670 nm | 10 mW | 30 mA | 2.2 V | 8° | 25° | Single Transverse Mode | Ø5.6 mm |
HL6714G | 670 nm | 10 mW | 55 mA | <2.7 V | 8° | 22° | Single Transverse Mode | Ø9 mm |
HL6756MG | 670 nm | 15 mW | 35 mA | 2.3 V | 8° | 24° | Single Transverse Mode | Ø5.6 mm |
LP685-SF15 | 685 nm | 15 mW | 55 mA | 2.1 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6750MG | 685 nm | 50 mW | 70 mA | 2.3 V | 9° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6738MG | 690 nm | 30 mW | 85 mA | 2.5 V | 8.5° | 19° | Single Transverse Mode | Ø5.6 mm |
LP705-SF15 | 705 nm | 15 mW | 55 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL7001MG | 705 nm | 40 mW | 75 mA | 2.5 V | 9° | 18° | Single Transverse Mode | Ø5.6 mm |
LP730-SF15 | 730 nm | 15 mW | 70 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL7302MG | 730 nm | 40 mW | 75 mA | 2.5 V | 9° | 18° | Single Transverse Mode | Ø5.6 mm |
L760VH1 | 760 nm | 0.5 mW | 3 mA (Max) | 2.2 V | 12° | 12° | Single Frequency | TO-46 |
DBR760PN | 761 nm | 9 mW | 125 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L763VH1 | 763 nm | 0.5 mW | 3 mA (Max) | 2.0 V | 10° | 10° | Single Frequency | TO-46 |
DBR767PN | 767 nm | 23 mW | 220 mA | 1.87 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR770PN | 770 nm | 35 mW | 220 mA | 1.92 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L780P010 | 780 nm | 10 mW | 24 mA | 1.8 V | 8° | 30° | Single Transverse Mode | Ø5.6 mm |
DBR780PN | 780 nm | 45 mW | 250 mA | 1.9 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L785P5 | 785 nm | 5 mW | 28 mA | 1.9 V | 10° | 29° | Single Transverse Mode | Ø5.6 mm |
LPS-PM785-FC | 785 nm | 6.5 mW | 60 mA | - | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
LPS-785-FC | 785 nm | 10 mW | 65 mA | 1.85 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP785-SF20 | 785 nm | 20 mW | 85 mA | 1.9 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
DBR785S | 785 nm | 25 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR785P | 785 nm | 25 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L785P25 | 785 nm | 25 mW | 45 mA | 1.9 V | 8° | 30° | Single Transverse Mode | Ø5.6 mm |
FPV785S | 785 nm | 50 mW | 410 mA | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV785P | 785 nm | 50 mW | 410 mA | 2.1 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP785-SAV50 | 785 nm | 50 mW | 500 mA | 2.2 V | - | - | Single Frequency | Ø9 mm, SM Pigtail |
L785P090 | 785 nm | 90 mW | 125 mA | 2.0 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
LP785-SF100 | 785 nm | 100 mW | 300 mA | 2.0 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
FPL785P | 785 nm | 200 mW | 500 mA | 2.1 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL785S-250 | 785 nm | 250 mW (Min) | 500 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD785-SEV300 | 785 nm | 300 mW | 500 mA (Max) | 2.0 V | 8° | 16° | Single Frequency | Ø9 mm |
LD785-SH300 | 785 nm | 300 mW | 400 mA | 2.0 V | 7° | 18° | Single Transverse Mode | Ø9 mm |
FPL785C | 785 nm | 300 mW | 400 mA | 2.0 V | 7° | 18° | Single Transverse Mode | 3 mm x 5 mm Submount |
LD785-SE400 | 785 nm | 400 mW | 550 mA | 2.0 V | 7° | 16° | Single Transverse Mode | Ø9 mm |
FPV785M | 785 nm | 600 mW | 1100 mA | 1.9 V | - | - | Multimode | Butterfly, MM Pigtail |
L795VH1 | 795 nm | 0.25 mW | 1.2 mA | 1.8 V | 20° | 12° | Single Frequency | TO-46 |
DBR795PN | 795 nm | 40 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR808PN | 808 nm | 42 mW | 250 mA | 2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP808-SA60 | 808 nm | 60 mW | 150 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-808-0150 | 808 nm | 150 mW | 180 mA | 1.9 V | 8° | 17° | Single Transverse Mode | Ø9 mm |
L808P200 | 808 nm | 200 mW | 260 mA | 2 V | 10° | 30° | Multimode | Ø5.6 mm |
FPL808P | 808 nm | 200 mW | 600 mA | 2.1 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL808S | 808 nm | 200 mW | 750 mA | 2.3 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
L808H1 | 808 nm | 300 mW | 400 mA | 2.1 V | 14° | 6° | Single Transverse Mode | Ø9 mm |
LD808-SE500 | 808 nm | 500 mW | 750 mA | 2.2 V | 7° | 14° | Single Transverse Mode | Ø9 mm |
LD808-SEV500 | 808 nm | 500 mW | 800 mA (Max) | 2.2 V | 8° | 14° | Single Frequency | Ø9 mm |
L808P500MM | 808 nm | 500 mW | 650 mA | 1.8 V | 12° | 30° | Multimode | Ø5.6 mm |
L808P1000MM | 808 nm | 1000 mW | 1100 mA | 2 V | 9° | 30° | Multimode | Ø9 mm |
DBR816PN | 816 nm | 45 mW | 250 mA | 1.95 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP820-SF80 | 820 nm | 80 mW | 230 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L820P100 | 820 nm | 100 mW | 145 mA | 2.1 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
L820P200 | 820 nm | 200 mW | 250 mA | 2.4 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
DBR828PN | 828 nm | 24 mW | 250 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPS-830-FC | 830 nm | 10 mW | 120 mA | - | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPS-PM830-FC | 830 nm | 10 mW | 50 mA | 2.0 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
LP830-SF30 | 830 nm | 30 mW | 115 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
HL8338MG | 830 nm | 50 mW | 75 mA | 1.9 V | 9° | 22° | Single Transverse Mode | Ø5.6 mm |
L830H1 | 830 nm | 250 mW | 3 A (Max) | 2 V | 8° | 10° | Single Transverse Mode | Ø9 mm |
FPL830P | 830 nm | 300 mW | 900 mA | 2.22 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL830S | 830 nm | 350 mW | 900 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD830-SE650 | 830 nm | 650 mW | 900 mA | 2.3 V | 7° | 13° | Single Transverse Mode | Ø9 mm |
LD830-MA1W | 830 nm | 1 W | 2 A | 2.1 V | 7° | 24° | Multimode | Ø9 mm |
LD830-ME2W | 830 nm | 2 W | 3 A (Max) | 2.0 V | 8° | 21° | Multimode | Ø9 mm |
L840P200 | 840 nm | 200 mW | 255 mA | 2.4 V | 9 | 17 | Single Transverse Mode | Ø5.6 mm |
L850VH1 | 850 nm | 1 mW | 6 mA (Max) | 2 V | 12° | 12° | Single Frequency | TO-46 |
L850P010 | 850 nm | 10 mW | 50 mA | 2 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
L850P030 | 850 nm | 30 mW | 65 mA | 2 V | 8.5° | 30° | Single Transverse Mode | Ø5.6 mm |
FPV852S | 852 nm | 20 mW | 400 mA | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV852P | 852 nm | 20 mW | 400 mA | 2.2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR852PN | 852 nm | 24 mW | 300 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP852-SF30 | 852 nm | 30 mW | 115 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L852P50 | 852 nm | 50 mW | 75 mA | 1.9 V | 9° | 22° | Single Transverse Mode | Ø5.6 mm |
LP852-SF60 | 852 nm | 60 mW | 150 mA | 2.0 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L852P100 | 852 nm | 100 mW | 120 mA | 1.9 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L852P150 | 852 nm | 150 mW | 170 mA | 1.9 V | 8° | 18° | Single Transverse Mode | Ø9 mm |
L852SEV1 | 852 nm | 270 mW | 400 mA (Max) | 2.0 V | 9° | 12° | Single Frequency | Ø9 mm |
L852H1 | 852 nm | 300 mW | 415 mA (Max) | 2 V | 7° | 15° | Single Transverse Mode | Ø9 mm |
FPL852P | 852 nm | 300 mW | 900 mA | 2.35 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL852S | 852 nm | 350 mW | 900 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD852-SE600 | 852 nm | 600 mW | 950 mA | 2.3 V | 7° (1/e2) | 13° (1/e2) | Single Transverse Mode | Ø9 mm |
LD852-SEV600 | 852 nm | 600 mW | 1050 mA (Max) | 2.2 V | 8° | 13° (1/e2) | Single Frequency | Ø9 mm |
LP880-SF3 | 880 nm | 3 mW | 25 mA | 2.2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L880P010 | 880 nm | 10 mW | 30 mA | 2.0 V | 12° | 37° | Single Transverse Mode | Ø5.6 mm |
L895VH1 | 895 nm | 0.2 mW | 1.4 mA | 1.6 V | 20° | 13° | Single Frequency | TO-46 |
DBR895PN | 895 nm | 12 mW | 300 mA | 2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP904-SF3 | 904 nm | 3 mW | 30 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L904P010 | 904 nm | 10 mW | 50 mA | 2.0 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
LP915-SF40 | 915 nm | 40 mW | 130 mA | 1.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
DBR935PN | 935 nm | 13 mW | 300 mA | 1.75 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP940-SF30 | 940 nm | 30 mW | 90 mA | 1.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-940-0200 | 940 nm | 200 mW | 270 mA | 1.9 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L960H1 | 960 nm | 250 mW | 400 mA | 2.1 V | 11° | 12° | Single Transverse Mode | Ø9 mm |
FPV976S | 976 nm | 30 mW | 400 mA (Max) | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV976P | 976 nm | 30 mW | 400 mA (Max) | 2.2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR976PN | 976 nm | 33 mW | 450 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L976SEV1 | 976 nm | 270 mW | 400 mA (Max) | 2.0 V | 9° | 12° | Single Frequency | Ø9 mm |
BL976-SAG3 | 976 nm | 300 mW | 470 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
BL976-PAG500 | 976 nm | 500 mW | 830 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL976-PAG700 | 976 nm | 700 mW | 1090 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL976-PAG900 | 976 nm | 900 mW | 1480 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L980P010 | 980 nm | 10 mW | 25 mA | 2 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
LP980-SF15 | 980 nm | 15 mW | 70 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L980P030 | 980 nm | 30 mW | 50 mA | 1.5 V | 10° | 35° | Single Transverse Mode | Ø5.6 mm |
L980P100A | 980 nm | 100 mW | 150 mA | 1.6 V | 6° | 32° | Multimode | Ø5.6 mm |
LP980-SA60 | 980 nm | 60 mW | 230 mA | 2.0 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L980H1 | 980 nm | 200 mW | 300 mA (Max) | 2.0 V | 8° | 13° | Single Transverse Mode | Ø9 mm |
L980P200 | 980 nm | 200 mW | 300 mA | 1.5 V | 6° | 30° | Multimode | Ø5.6 mm |
DBR1060SN | 1060 nm | 130 mW | 650 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR1060PN | 1060 nm | 130 mW | 650 mA | 1.8 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR1064S | 1064 nm | 40 mW | 150 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR1064P | 1064 nm | 40 mW | 150 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR1064PN | 1064 nm | 110 mW | 550 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPS-1060-FC | 1064 nm | 50 mW | 220 mA | 1.4 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-A64-0200 | 1064 nm | 200 mW | 280 mA | 1.7 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L1064H1 | 1064 nm | 300 mW | 700 mA | 1.92 V | 7.6° | 13.5° | Single Transverse Mode | Ø9 mm |
L1064H2 | 1064 nm | 450 mW | 1100 mA | 1.92 V | 7.6° | 13.5° | Single Transverse Mode | Ø9 mm |
DBR1083PN | 1083 nm | 100 mW | 500 mA | 1.75 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L1270P5DFB | 1270 nm | 5 mW | 15 mA | 1.1 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1290P5DFB | 1290 nm | 5 mW | 16 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LP1310-SAD2 | 1310 nm | 2.0 mW | 40 mA | 1.1 V | - | - | Single Frequency | Ø5.6 mm, SM Pigtail |
LP1310-PAD2 | 1310 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, PM Pigtail |
LPS-PM1310-FC | 1310 nm | 2.5 mW | 20 mA | 1.1 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
L1310P5DFB | 1310 nm | 5 mW | 16 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LPSC-1310-FC | 1310 nm | 50 mW | 350 mA | 2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1053S | 1310 nm | 130 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1053P | 1310 nm | 130 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL1053T | 1310 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
FPL1053C | 1310 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 27° | Single Transverse Mode | Chip on Submount |
L1310G1 | 1310 nm | 2000 mW | 5 A | 1.5 V | 7° | 24° | Multimode | Ø9 mm |
DFB1320P | 1320 nm | 250 mW (Min) | 1800 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L1330P5DFB | 1330 nm | 5 mW | 14 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1370G1 | 1370 nm | 2000 mW | 5 A | 1.4 V | 6° | 22° | Multimode | Ø9 mm |
BL1425-PAG500 | 1425 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL1436-PAG500 | 1436 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L1450G1 | 1450 nm | 2000 mW | 5 A | 1.4 V | 7° | 22° | Multimode | Ø9 mm |
BL1456-PAG500 | 1456 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L1470P5DFB | 1470 nm | 5 mW | 19 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1480G1 | 1480 nm | 2000 mW | 5 A | 1.6 V | 6° | 20° | Multimode | Ø9 mm |
L1490P5DFB | 1490 nm | 5 mW | 24 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1510P5DFB | 1510 nm | 5 mW | 20 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1530P5DFB | 1530 nm | 5 mW | 21 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LPS-1550-FC | 1550 nm | 1.5 mW | 30 mA | 1.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPS-PM1550-FC | 1550 nm | 1.5 mW | 30 mA | 1.1 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP1550-SAD2 | 1550 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, SM Pigtail |
LP1550-PAD2 | 1550 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, PM Pigtail |
L1550P5DFB | 1550 nm | 5 mW | 20 mA | 1.0 V | 8° | 10° | Single Frequency | Ø5.6 mm |
ML925B45F | 1550 nm | 5 mW | 30 mA | 1.1 V | 25° | 30° | Single Transverse Mode | Ø5.6 mm |
SFL1550S | 1550 nm | 40 mW | 300 mA | 1.5 V | - | - | Single Frequency | Butterfly, SM Pigtail |
SFL1550P | 1550 nm | 40 mW | 300 mA | 1.5 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPSC-1550-FC | 1550 nm | 50 mW | 250 mA | 2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1009S | 1550 nm | 100 mW | 400 mA | 1.4 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1009P | 1550 nm | 100 mW | 400 mA | 1.4 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
ULN15PC | 1550 nm | 140 mW | 650 mA | 3.0 V | - | - | Single Frequency | Extended Butterfly, PM Pigtail |
ULN15PT | 1550 nm | 140 mW | 650 mA | 3.0 V | - | - | Single Frequency | Extended Butterfly, PM Pigtail |
FPL1001C | 1550 nm | 150 mW | 400 mA | 1.4 V | 18° | 31° | Single Transverse Mode | Chip on Submount |
FPL1055T | 1550 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
FPL1055C | 1550 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
L1550G1 | 1550 nm | 1700 mW | 5 A | 1.5 V | 7° | 28° | Multimode | Ø9 mm |
DFB1550 | 1555 nm | 100 mW (Min) | 1000 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1550N | 1555 nm | 130 mW (Min) | 1800 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1550P | 1555 nm | 100 mW (Min) | 1000 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DFB1550PN | 1555 nm | 130 mW (Min) | 1800 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L1570P5DFB | 1570 nm | 5 mW | 25 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1575G1 | 1575 nm | 1700 mW | 5 A | 1.5 V | 6° | 28° | Multimode | Ø9 mm |
LPSC-1625-FC | 1625 nm | 50 mW | 350 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1054S | 1625 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1054P | 1625 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL1054C | 1625 nm | 250 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
FPL1054T | 1625 nm | 200 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
DFB1642 | 1642 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1642P | 1642 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DFB1646 | 1646 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1646P | 1646 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1059S | 1650 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1059P | 1650 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
DFB1650 | 1650 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1650P | 1650 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1059C | 1650 nm | 225 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
FPL1059T | 1650 nm | 225 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
DFB1654 | 1654 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1654P | 1654 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1940S | 1940 nm | 15 mW | 400 mA | 2 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL2000S | 2 µm | 15 mW | 400 mA | 2 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL2000C | 2 µm | 30 mW | 400 mA | 5.2 V | 8° | 19° | Single Transverse Mode | Chip on Submount |
ID3250HHLH | 3.00 - 3.50 µm (DFB) | 5 mW | 400 mA (Max) | 5 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
IF3400T1 | 3.40 µm (FP) | 30 mW | 300 mA | 4 V | 40° | 70° | Single Transverse Mode | Ø9 mm |
ID3750HHLH | 3.50 - 4.00 µm (DFB) | 5 mW | 300 mA (Max) | 5 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
ID3596HH | 3.596 µm (DFB) | 5 mW | 300 mA (Max) | 5 V | 5 mrad (0.29°) | 5 mrad (0.29°) | Single Frequency | Horizontal HHL |
QF3850T1 | 3.85 µm (FP) | 200 mW | 600 mA (Max) | 13.5 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF3850HHLH | 3.85 µm (FP) | 320 mW (Min) | 1100 mA (Max) | 13 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QF4040HHLH | 4.05 µm (FP) | 320 mW (Min) | 1100 mA (Max) | 13 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD4500CM1 | 4.00 - 5.00 µm (DFB) | 40 mW | 500 mA (Max) | 10.5 V | 30° | 40° | Single Frequency | Two-Tab C-Mount |
QD4500HHLH | 4.00 - 5.00 µm (DFB) | 80 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4050T2 | 4.05 µm (FP) | 70 mW | 250 mA | 12 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4050C2 | 4.05 µm (FP) | 300 mW | 400 mA | 12 V | 30 | 42 | Single Transverse Mode | Two-Tab C-Mount |
QF4050T1 | 4.05 µm (FP) | 300 mW | 600 mA (Max) | 12.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4050D2 | 4.05 µm (FP) | 800 mW | 750 mA | 13 V | 30° | 40° | Single Transverse Mode | D-Mount |
QF4050D3 | 4.05 µm (FP) | 1200 mW | 1000 mA | 13 V | 30° | 40° | Single Transverse Mode | D-Mount |
QD4327HH | 4.327 µm (DFB) | 90 mW | 500 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD4472HH | 4.472 µm (DFB) | 85 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4600T2 | 4.60 µm (FP) | 200 mW | 500 mA (Max) | 13.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600T1 | 4.60 µm (FP) | 400 mW | 800 mA (Max) | 12.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600C2 | 4.60 µm (FP) | 600 mW | 600 mA | 12 V | 30° | 42° | Single Transverse Mode | Two-Tab C-Mount |
QF4600T3 | 4.60 µm (FP) | 1000 mW | 800 mA (Max) | 13 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600D4 | 4.60 µm (FP) | 2500 mW | 1800 mA | 12.5 V | 40° | 30° | Single Transverse Mode | D-Mount |
QF4600D3 | 4.60 µm (FP) | 3000 mW | 1700 mA | 12.5 V | 30° | 40° | Single Transverse Mode | D-Mount |
QD4602HH | 4.602 µm (DFB) | 150 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4650HHLH | 4.65 µm (FP) | 1500 mW (Min) | 1100 mA | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD5500CM1 | 5.00 - 6.00 µm (DFB) | 40 mW | 700 mA (Max) | 9.5 V | 30° | 45° | Single Frequency | Two-Tab C-Mount |
QD5500HHLH | 5.00 - 6.00 µm (DFB) | 150 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD5250C2 | 5.20 - 5.30 µm (DFB) | 60 mW | 700 mA (Max) | 9.5 V | 30° | 45° | Single Frequency | Two-Tab C-Mount |
QD5263HH | 5.263 µm (DFB) | 130 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD6500CM1 | 6.00 - 7.00 µm (DFB) | 40 mW | 650 mA (Max) | 10 V | 35° | 50° | Single Frequency | Two-Tab C-Mount |
QD6500HHLH | 6.00 - 7.00 µm (DFB) | 80 mW | 600 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD6134HH | 6.134 µm (DFB) | 50 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7500CM1 | 7.00 - 8.00 µm (DFB) | 40 mW | 600 mA (Max) | 10 V | 40° | 50° | Single Frequency | Two-Tab C-Mount |
QD7500HHLH | 7.00 - 8.00 µm (DFB) | 50 mW | 700 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7500DM1 | 7.00 - 8.00 µm (DFB) | 100 mW | 600 mA (Max) | 11.5 V | 40° | 55° | Single Frequency | D-Mount |
QD7416HH | 7.416 µm (DFB) | 100 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7716HH | 7.716 µm (DFB) | 30 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF7900HB | 7.9 µm (FP) | 700 mW | 1600 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD7901HH | 7.901 µm (DFB) | 50 mW | 700 mA (Max) | 10 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD8050CM1 | 8.00 - 8.10 µm (DFB) | 100 mW | 1000 mA (Max) | 9.5 V | 55° | 70° | Single Frequency | Two-Tab C-Mount |
QD8500CM1 | 8.00 - 9.00 µm (DFB) | 100 mW | 900 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD8500HHLH | 8.00 - 9.00 µm (DFB) | 100 mW | 600 mA (Max) | 10.2 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD8496HH | 8.496 µm (DFB) | 100 mW | 800 mA (Max) | 10 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF8450C2 | 8.45 µm (FP) | 300 mW | 750 mA | 9 V | 40° | 60° | Single Transverse Mode | Two-Tab C-Mount |
QF8500HB | 8.5 µm (FP) | 500 mW | 2000 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD8650CM1 | 8.60 - 8.70 µm (DFB) | 50 mW | 900 mA (Max) | 9.5 V | 55° | 70° | Single Frequency | Two-Tab C-Mount |
QD8912HH | 8.912 µm (DFB) | 150 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD9500CM1 | 9.00 - 10.00 µm (DFB) | 60 mW | 800 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD9500HHLH | 9.00 - 10.00 µm (DFB) | 100 mW | 600 mA (Max) | 10.2 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD9062HH | 9.062 µm (DFB) | 130 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF9150C2 | 9.15 µm (FP) | 200 mW | 850 mA | 11 V | 40° | 60° | Single Transverse Mode | Two-Tab C-Mount |
QF9200HB | 9.2 µm (FP) | 250 mW | 2000 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QF9500T1 | 9.5 µm (FP) | 300 mW | 550 mA | 12 V | 40° | 55° | Single Transverse Mode | Ø9 mm |
QD9550C2 | 9.50 - 9.60 µm (DFB) | 60 mW | 800 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD9697HH | 9.697 µm (DFB) | 80 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10500CM1 | 10.00 - 11.00 µm (DFB) | 40 mW | 600 mA (Max) | 10 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD10500HHLH | 10.00 - 11.00 µm (DFB) | 50 mW | 700 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10530HH | 10.530 µm (DFB) | 50 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10549HH | 10.549 µm (DFB) | 60 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10622HH | 10.622 µm (DFB) | 60 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
The rows shaded green above denote single-frequency lasers. |

Item # | Info | Wavelength | Powera,b | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodec | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L375P70MLDd | ![]() | 375 nm | 70 mW | 110 mA / 140 mA | Ø5.6 mm | F | Yes | - | No | Single Transverse Mode |
L404P400M | ![]() | 404 nm | 400 mW | 370 mA / 410 mA | Ø5.6 mm | G | No | S7060R | No | Multimode |
L405P20 | ![]() | 405 nm | 20 mW | 38 mA / 55 mA | Ø5.6 mm | B | Yes | S7060R | No | Single Transverse Mode |
DL5146-101S | ![]() | 405 nm | 40 mW | 70 mA / 100 mA | Ø5.6 mm | B | Yes | S7060R | No | Single Transverse Mode |
L405A1 | ![]() | 405 nm | 175 mW (Min) | 150 mA / 200 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L405G1 | ![]() | 405 nm | 1000 mW | 900 mA / 1200 mA | Ø9 mm | G | No | S8060 | No | Multimode |

Item # | Info | Wavelength | Powera,b | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodec | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L450G3 | ![]() | 450 nm | 100 mW (Min) | 80 mA / 110 mA | Ø3.8 mm | G | No | S038S | No | Single Transverse Mode |
L450G2 | ![]() | 450 nm | 100 mW (Min) | 80 mA / 110 mA | Ø5.6 mm | G | No | S7060R | No | Single Transverse Mode |
L450P1600MM | ![]() | 450 nm | 1600 mW | 1200 mA / 1500 mA | Ø5.6 mm | G | No | S7060R | No | Multimode |
L473P100 | ![]() | 473 nm | 100 mW | 120 mA / 150 mA | Ø5.6 mm | F+d | Yes | - | No | Single Transverse Mode |
L488P60 | ![]() | 488 nm | 60 mW | 75 mA / 110 mA | Ø5.6 mm | B | Yes | S7060R | No | Single Transverse Mode |
L515A1 | ![]() | 515 nm | 10 mW | 50 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L520A1 | ![]() | 520 nm | 30 mW (Min) | 80 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
PL520 | ![]() | 520 nm | 50 mW | 150 mA / 160 mA | Ø3.8 mm | G | No | S038S | No | Single Transverse Mode |
L520P50 | ![]() | 520 nm | 50 mW | 150 mA / 160 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L520A2 | ![]() | 520 nm | 110 mW (Min) | 225 mA / 330 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
HL63163DG | ![]() | 633 nm | 100 mW | 170 mA / 230 mA | Ø5.6 mm | G | No | S7060R | No | Single Transverse Mode |
L635P5 | ![]() | 635 nm | 5 mW | 30 mA / 45 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6312G | ![]() | 635 nm | 5 mW | 50 mA / 85 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
HL6320G | ![]() | 635 nm | 10 mW | 60 mA / 95 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
HL6322G | ![]() | 635 nm | 15 mW | 75 mA / 100 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L637P5 | ![]() | 637 nm | 5 mW | 20 mA / 25 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
HL63142DG | ![]() | 637 nm | 100 mW | 140 mA / 180 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL63133DG | ![]() | 637 nm | 170 mW | 250 mA / 320 mA | Ø5.6 mm | G | No | S7060R | No | Single Transverse Mode |
HL6388MG | ![]() | 637 nm | 250 mW | 340 mA / 430 mA | Ø5.6 mm | H | No | S7060R | No | Multimode |
L637G1 | ![]() | 637 nm | 1200 mW | 1100 mA / 1500 mA | Ø9 mmc | G | No | Customc | No | Multimode |
L638P040 | ![]() | 638 nm | 40 mW | 92 mA / 115 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L638P150 | ![]() | 638 nm | 150 mW | 230 mA / 300 mA | Ø3.8 mm | G | No | S038S | No | Single Transverse Mode |
L638P200 | ![]() | 638 nm | 200 mW | 280 mA / 330 mA | Ø5.6 mm | G | No | S7060R | No | Single Transverse Mode |
L638P700M | ![]() | 638 nm | 700 mW | 820 mA / 1000 mA | Ø5.6 mm | G | No | S7060R | No | Multimode |
HL6358MG | ![]() | 639 nm | 10 mW | 40 mA / 50 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6323MG | ![]() | 639 nm | 30 mW | 100 mA / 130 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
HL6362MG | ![]() | 640 nm | 40 mW | 90 mA / 110 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6364DG | ![]() | 642 nm | 60 mW | 120 mA / 155 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6366DG | ![]() | 642 nm | 80 mW | 150 mA / 175 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6385DG | ![]() | 642 nm | 150 mW | 250 mA / 350 mA | Ø5.6 mm | H | No | S7060R | No | Single Transverse Mode |
L650P007 | ![]() | 650 nm | 7 mW | 28 mA / 35 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6501MG | ![]() | 658 nm | 30 mW | 75 mA / 120 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
L658P040 | ![]() | 658 nm | 40 mW | 75 mA / 110 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6544FM | ![]() | 660 nm | 50 mW | 115 mA / 135 mA | Ø5.6 mm | G | No | S7060R | No | Single Transverse Mode |
HL6545MG | ![]() | 660 nm | 120 mW | 170 mA / 210 mA | Ø5.6 mm | H | No | S7060R | No | Single Transverse Mode |
L660P120 | ![]() | 660 nm | 120 mW | 175 mA / 210 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L670VH1 | ![]() | 670 nm | 1 mW | 2.5 mA / 2.8 mA | TO-46 | H | No | S8060 | No | Single Transverse Mode |
HL6748MG | ![]() | 670 nm | 10 mW | 30 mA / 45 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6714G | ![]() | 670 nm | 10 mW | 55 mA / 90 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
HL6756MG | ![]() | 670 nm | 15 mW | 35 mA / 45 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
HL6750MG | ![]() | 685 nm | 50 mW | 70 mA / 120 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
HL6738MG | ![]() | 690 nm | 30 mW | 85 mA / 115 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
HL7001MG | ![]() | 705 nm | 40 mW | 75 mA / 100 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
HL7302MG | ![]() | 730 nm | 40 mW | 75 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L760VH1 | ![]() | 760 nm | 0.5 mW | 3 mA (Max) | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyc |
L763VH1 | ![]() | 763 nm | 0.5 mW | 3 mA (Max) | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyc |
L780P010 | ![]() | 780 nm | 10 mW | 24 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L785P5 | ![]() | 785 nm | 5 mW | 28 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L785P25 | ![]() | 785 nm | 25 mW | 45 mA / 60 mA | Ø5.6 mm | B | Yes | S7060R | No | Single Transverse Mode |
L785P090 | ![]() | 785 nm | 90 mW | 125 mA / 165 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
LD785-SEV300d | ![]() | 785 nm | 300 mW | 500 mA (Max)e | Ø9 mmf | E | No | S8060 or S8060-4 | Yes | Single Frequencyc |
LD785-SH300g | ![]() | 785 nm | 300 mW | 400 mA / 450 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD785-SE400g | ![]() | 785 nm | 400 mW | 550 mA / 600 mA | Ø9 mm | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
L795VH1 | ![]() | 795 nm | 0.25 mW | 1.2 mA / 1.5 mA | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyc |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
M9-808-0150 | ![]() | 808 nm | 150 mW | 180 mA / 220 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
L808P200 | ![]() | 808 nm | 200 mW | 260 mA / 300 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode |
L808H1 | ![]() | 808 nm | 300 mW | 400 mA / 450 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
L808P500MM | ![]() | 808 nm | 500 mW | 650 mA / 700 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode |
LD808-SE500c | ![]() | 808 nm | 500 mW | 750 mA / 800 mA | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD808-SEV500e | ![]() | 808 nm | 500 mW | 800 mA (Max)f | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Frequencyg |
L808P1000MM | ![]() | 808 nm | 1000 mW | 1100 mA / 1500 mA | Ø9 mm | E | No | S8060 or S8060-4 | No | Multimode |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L820P100 | ![]() | 820 nm | 100 mW | 145 mA / 210 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
L820P200 | ![]() | 820 nm | 200 mW | 250 mA / 340 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
HL8338MG | ![]() | 830 nm | 50 mW | 75 mA / 100 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
L830H1 | ![]() | 830 nm | 250 mW | 400 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD830-SE650c | ![]() | 830 nm | 650 mW | 900 mA / 1050 mA | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD830-MA1W | ![]() | 830 nm | 1000 mW | 2000 mA (Max) | Ø9 mm | A | Yes | S8060 or S8060-4 | Yes | Multimode |
LD830-ME2W | ![]() | 830 nm | 2000 mW | 3 A (Max) | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Multimode |
L840P200 | ![]() | 840 nm | 200 mW | 255 mA / 340 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode |
L850VH1 | ![]() | 850 nm | 1 mW | 6 mA (Max) | TO-46 | H | No | S8060 | No | Single Frequencye |
L850P010 | ![]() | 850 nm | 10 mW | 50 mA / 70 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L850P030 | ![]() | 850 nm | 30 mW | 65 mA / 95 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L852P50 | ![]() | 852 nm | 50 mW | 75 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L852P100 | ![]() | 852 nm | 100 mW | 120 mA / 170 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
L852P150 | ![]() | 852 nm | 150 mW | 170 mA / 220 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
L852SEV1f | ![]() | 852 nm | 270 mW | 350 mA / 400 mAg | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Frequencye |
L852H1 | ![]() | 852 nm | 300 mW | 415 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD852-SE600c | ![]() | 852 nm | 600 mW | 950 mA / 1050 mA | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
LD852-SEV600f | ![]() | 852 nm | 600 mW | 1050 mA (Max)g | Ø9 mmd | E | No | S8060 or S8060-4 | Yes | Single Frequencye |
L880P010 | ![]() | 880 nm | 10 mW | 30 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L895VH1 | ![]() | 895 nm | 0.2 mW | 1.4 mA / 2.0 mA | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencye |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L904P010 | ![]() | 904 nm | 10 mW | 50 mA / 70 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
M9-940-0200 | ![]() | 940 nm | 200 mW | 270 mA / 320 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
L960H1 | ![]() | 960 nm | 250 mW | 400 mA / 430 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L976SEV1c | ![]() | 976 nm | 270 mW | 350 mA / 400 mAd | Ø9 mme | E | No | S8060 or S8060-4 | Yes | Single Frequencyf |
L980P010 | ![]() | 980 nm | 10 mW | 25 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L980P030 | ![]() | 980 nm | 30 mW | 50 mA / 70 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
L980P100A | ![]() | 980 nm | 100 mW | 150 mA / 190 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode |
L980H1 | ![]() | 980 nm | 200 mW | 300 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Modeg |
L980P200 | ![]() | 980 nm | 200 mW | 300 mA / 400 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode |

Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
M9-A64-0200 | ![]() | 1064 nm | 200 mW | 280 mA / 350 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode |
L1064H1 | ![]() | 1064 nm | 300 mW | 700 mA / 900 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
L1064H2 | ![]() | 1064 nm | 450 mW | 1100 mA / 1200 mA | Ø9 mm | E | No | S8060 or S8060-4 | No | Single Transverse Mode |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L1270P5DFBc | ![]() | 1270 nm | 5 mW | 15 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1290P5DFBc | ![]() | 1290 nm | 5 mW | 16 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1310P5DFBc | ![]() | 1310 nm | 5 mW | 16 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
FPL1053Te | ![]() | 1310 nm | 300 mW (Pulsed) | 750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode |
L1310G1 | ![]() | 1310 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
L1330P5DFBc | ![]() | 1330 nm | 5 mW | 14 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1370G1 | ![]() | 1370 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
L1450G1 | ![]() | 1450 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
L1470P5DFBc | ![]() | 1470 nm | 5 mW | 19 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1480G1 | ![]() | 1480 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |

注:下表の緑色に網掛けがされている製品は、単一周波数レーザです。
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta | Package | Pin Code | Monitor Photodiodeb | Compatible Socket | Wavelength Tested | Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L1490P5DFBc | ![]() | 1490 nm | 5 mW | 24 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1510P5DFBc | ![]() | 1510 nm | 5 mW | 20 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1530P5DFBc | ![]() | 1530 nm | 5 mW | 21 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1550P5DFBc | ![]() | 1550 nm | 5 mW | 20 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
ML925B45F | ![]() | 1550 nm | 5 mW | 30 mA / 50 mA | Ø5.6 mm | D | Yes | - | No | Single Transverse Mode |
FPL1055Te | ![]() | 1550 nm | 300 mW (Pulsed) | 750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode |
L1550G1 | ![]() | 1550 nm | 1700 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
L1570P5DFBc | ![]() | 1570 nm | 5 mW | 25 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
L1575G1 | ![]() | 1575 nm | 1700 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
FPL1054Te | ![]() | 1625 nm | 200 mW (Pulsed) | 750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode |
FPL1059Te | ![]() | 1650 nm | 225 mW (Pulsed) | 750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode |
