ピグテール付き単一周波数外部共振器レーザー(ECL)、バタフライパッケージ


  • Narrow Linewidth, Single-Frequency Laser Diodes
  • 1550 nm Center Wavelength
  • Integrated TEC Element
  • FC/APC Terminated

SFL1550S

ECL with SM Fiber

SFL1550P

ECL with PM Fiber

Related Items


Please Wait
Contact ThorlabsLaser Diode Tutorial
アイコン等について
info icon下記の表内にある青いInfoアイコンをクリックすると、各製品固有の仕様書と図面がご覧いただけます。
info icon赤いアイコンをクリックすると、補足資料をダウンロードすることができます。

特長

  • 中心波長: 1550 nm
  • 外部共振器型、単一周波数設計
  • 50 kHzの狭線幅と45 dBのSMSR(いずれも典型値)
  • シングルモードまたは偏波保持ファイバ出力
  • FC/APCコネクタ、2.0 mmナローキー
  • 業界標準のタイプ1、14ピンバタフライパッケージ

用途

  • シードレーザ
  • レーザ通信
  • 計測
  • 非線形周波数倍増
  • LIDAR/リモートセンシングシステム用のレーザ光源

当社の単一周波数外部共振器半導体レーザ(ECL)は、狭い線幅(典型値50 kHz)の単一周波数で、最大40 mWを出力します。 これらの外部共振器半導体レーザは、小型な14ピンバタフライパッケージに収められており、標準的な14ピン半導体レーザーマウント(LM14S2など)に取り付け可能です。この単一周波数レーザには、熱電冷却素子(TEC)、サーミスタ、光アイソレータが内蔵され、FC/APCコネクタ付きシングルモードファイバあるいは偏波保持ファイバが付いています。 レーザにはモニタ用フォトダイオードが内蔵されていないため、定電流モードで動作させなければなりません。定出力モードでの駆動の場合は、右表のセレクションガイドで、モニタ用フォトダイオード内蔵のTO-Can、ピグテール付き、バタフライ型の半導体レーザをご参照ください。

こちらのECLレーザは当社の半導体レーザ用ドライバや温度コントローラにも対応します。狭線幅の出力を得るには、当社のLDCシリーズコントローラのように駆動電流ノイズが低いドライバのご使用をお勧めいたします。

SFLレーザは動作電流と温度の範囲内で高出力の単一周波数動作ができるよう設計されていますが、マルチモード動作をする電流と温度の組み合わせが存在します。 確実な単一周波数動作には適切な温度制御と電流のチューニングが必要です。 適切な動作条件をお選びいただくために、各ユニットには個別の動作特性と単一周波数領域を示すデータシートが添付されています。 その他の単一周波数レーザをご覧になりたい場合には当社の分布ブラッグ反射型(DBR)レーザのラインナップをご覧ください。

埃などの汚染物質がファイバ端面に堆積する可能性が少しでもある場合は、ご使用になる前に毎回必ずファイバーコネクタをクリーニングすることをお勧めします。 ファイバ先端の中心におけるレーザ光の密度は非常に高くなる可能性があるため、汚染物質が付着している場合は燃焼する危険があります。 これらのピグテール付き半導体レーザに付いているコネクタはクリーニングを施してからキャップを付けて出荷していますが、パッケージから取り出された後では周囲環境から汚染物が付着している可能性がございますのでご注意ください。ほかのファイバをこのレーザに接続もしくはレーザからファイバを取り外す際には、レーザの電源を必ず切ってください。出力レベルが10 mW以上の場合には特にご注意ください。

品質保証情報については「注意事項」タブ内をご参照ください。

単一周波数レーザSFL1550シリーズ

 SymbolMinTypicalMax
Center WavelengthλC1549.5 nm1550 nm1550.5 nm
LinewidthΔν-50 kHz100 kHz
Side Mode Supression RatioSMSR40 dB45 dB-
Optical Power @ IOPPO25 mW40 mW-
Forward Voltage @ IOPVF-1.5 V1.8 V
Operating CurrentIOP-300 mA-
Threshold CurrentITH-50 mA-
Slope EfficiencyΔP/ΔI-0.2 mW/mA-
Relative Intensity NoiseRIN--150 dB/Hz-
Single-Frequency Continuous Tuning Range (1 kHz rate)Δf-3 GHz-
Operation Chip TemperatureTCHIP-25 °C-
Operation Case TemperatureTCASE10 °C-60 °C
TEC Operation @ TCASE = 25 °C
TEC CurrentITEC-0.3 A-
TEC VoltageVTEC-0.6 V-
Thermistor ResistanceRTH-10 kΩ-

タイプ1、14ピン バタフライパッケージのピン配列

pin out diagram

Pin Identification
1TEC +14TEC -
2Thermistor13Case
3NC12NC
4NC11Dev Cathode
5Thermistor10Dev Anode
6NC9NC
7NC8NC

下のグラフは典型値を示しており、個々のレーザによって性能が異なる場合があります。 SFLレーザにはそれぞれ性能プロット図がが同梱されます。

SFL1550シリーズレーザの典型的な特性

SFL1550 Output Spectrum
Click to Enlarge

灰色部分はマルチモード動作する領域を示しています。

SFL1550 Lasing Spectrum
Click to Enlarge

スペクトル分解能が0.02 nmの光スペクトルアナライザで測定しました。

SFL1550 Measured Linewidths
Click to Enlarge

ローレンツ線幅では、測定された遅延自己ホモダイン線幅はレーザの線幅のちょうど2倍になります。 ローレンツ線幅を得るには、超低ノイズ電流ドライバとTECコントローラを使用する必要があります。

SFL1550 Current Tuning
Click to Enlarge

単一周波数と連続チューニングを示すために、2つのSFL1550レーザからの出力を重畳し、そのヘテロダインビート周波数をRFスペクトラムアナライザで測定しました。

ECL、DFB、VHG安定化、DBRの単一周波数(SFL)レーザ

ECL Laser Diagram
Click to Enlarge

図1: ECLレーザは、利得チップの外側に回折格子があります。

レーザの多くの用途では、チューナブルな単一周波数動作が必要になります。 単一周波数出力を得るための半導体レーザとして、現在、外部共振型(ECL)、体積型ホログラフィック回折格子型(VHG)、分布帰還型(DFB)、分布反射型(DBR)の4種類のレーザがあります。 どれも回折格子を使用したフィードバックによって単一周波数を出力します。 しかしそれぞれ回折格子のフィードバック構造が異なるので、出力や帯域幅、ならびにサイドモード抑圧比(SMSR)などの性能が異なります。 下記では、4種類の単一周波数半導体レーザの主な違いについて述べています。

外部共振型レーザ
外部共振型レーザ(ECL)は、その構造により多くの標準的な自由空間半導体レーザに対応します。 つまりECLは、半導体レーザ素子が対応する様々な波長で使用することができるということです。 半導体レーザの出力光はレンズによってコリメートされ、回折格子に入射されます(図1参照)。 回折格子はフィードバック(反射)を生じさせ、安定した出力波長を選択するために用いられます。 適切な光学設計により外部共振器が単一縦型のレーザ光のみを選択するため、単一周波数で高サイドモード抑圧比(SMSR>45 dB)のレーザが出力されます。

ECLのメリットの1つに比較的長い共振器長が超狭線幅(<1 MHz)をもたらすことがあります。 また、様々な半導体レーザを組み込むことができるので、青色ならびに赤色波長において狭線幅の光を放出できる数少ない構造の1つとなっております。 広いチューニングレンジ(>100 nm)を得ることができますが、ECLの機械設計、ならびに半導体レーザの反射防止(AR)コーティングの質によってモードホップする傾向があります。

DBR Laser Diagram
Click to Enlarge

図2: DFBレーザにはアクティブゲイン媒体の長さに沿って、ブラッグ反射鏡が付いています。

分布帰還型レーザ
分布帰還型(DFB)レーザ(近赤外および中赤外でご提供可能)は半導体レーザ構造内に回折格子が組み込まれているレーザとなっております(図2参照)。 アクティブ領域と密結合する波形の周期構造がブラッグ反射鏡として働き、単一縦型のレーザ光モードを選択します。 アクティブ領域がブラッグ周波数近くで十分な利得を得られれば、端面反射鏡は必要なく、代わりにブラッグ反射鏡が全ての光フィードバックならびにモード選択に用いられることになります。 この「内蔵型」の光選択によってDFBレーザは、幅広い温度ならびに電流範囲で単一周波数動作を得ることができるのです。 DFBレーザにはモード選択の補助や歩留り向上のためによく位相シフト部分がレーザ構造内に用いられています。

DFBのレーザ波長は、ブラッグ波長とほぼ等しくなっております。

DBR Equation

ここで、λ は波長、neffは有効屈折率、Λは回折格子の周期です。 レーザ波長は、有効屈折率を変えることによってチューニングができます。 有効屈折率の変化はDFBレーザの温度ならびに駆動電流のチューニングによって得られます。

DFBレーザは、850 nmでは2 nm、1550 nmでは4 nm、もしくは中赤外域(4.00~11.00 µm)において少なくとも1 cm-1の比較的狭いチューニングレンジとなります。 しかし、このチューニングレンジにわたり単一周波数動作が得られている、つまりこれがモードホップ無しの連続したチューニングレンジであることを意味します。 この特長により、DFBはテレコムやセンサをはじめ、様々な用途で広く使用されています。 DFBの共振器長は比較的短いため、線幅の典型値は1 MHz~10 MHzの範囲内となります。 また、回折格子の構造とアクティブ領域が同じ領域にあるため、DFBの最大光出力は、ECLとDBRレーザに比べて低くなっております。

DBR Laser Diagram
Click to Enlarge

図3: VHGレーザの体積型ホログラフィック回折格子は、アクティブゲイン媒体の外側にあります。

体積型ホログラフィック回折格子型安定化レーザ
体積型ホログラフィック回折格子型(VHG)レーザもブラッグ反射鏡を使用しますが、この場合は、透過型回折格子は半導体レーザ出力の前に置かれます(図3参照)。 この回折格子は半導体レーザの一部ではないため、半導体レーザからは熱的に分離することが可能で、デバイスの波長安定性が向上します。 この回折格子は、通常は複数種類の屈折率の光学材料(通常はガラス)を周期的に積層する構成です。 ブラッグの条件を満たす波長の光だけが反射してレーザ共振器に戻り、それにより非常に高い波長安定性を有するレーザになります。 VHG安定化レーザは、高パワーにおいて、DFBレーザと同様の線幅で出力可能で、広い範囲の電流および温度にわたって波長がロックされます。

DBR Laser Diagram
Click to Enlarge

図4: DBRレーザのブラッグ反射鏡はアクティブゲイン媒体の外側にあります。

分布反射型レーザ
分布反射型(DBR)レーザは、DFBレーザと同様、回折格子が内部に組み込まれています。 しかしDFBレーザの回折格子はアクティブ(利得)領域に沿っているのに対し、DBRレーザの回折格子は、領域の外側に位置しています(図4参照)。 一般的にDBRレーザは典型的なDFBレーザにはない様々な領域を組み込むことが可能なので制御範囲とチューニングレンジがより広くなります。 例えばマルチ電極DBRレーザには位相制御領域があり、回折格子周期や半導体レーザ駆動電流制御とは独立に、位相のみを制御することが可能です。 この制御を共に使用することによってDBRレーザは幅広いチューニングレンジで単一周波数動作が可能となります。 例えば高性能なサンプルグレーティングDBRレーザのチューニングレンジは最大30~40 nmになりえます。 DFBレーザと異なりモードホップフリーではないため、入射ならびに温度を維持できるよう慎重な制御が必要です。

制御構造が複雑なマルチ電極DBRレーザに対し、構造をよりシンプルにしたDBRレーザは単電極のみで設計されています。 単電極DBRレーザには、回折格子ならびに位相制御の複雑構造はありませんが、チューニングレンジはマルチ電極に比べて狭くなります。 チューニングレンジはDFBレーザと同程度になり、駆動電流や温度によってモードホップも生じます。 モードホップのデメリットはありますが、回折格子がデバイスの長さと同じでなければいけない制限はないため、DFBレーザと比べて光出力が大きいなどのメリットもあります。 DBRならびにDFBのレーザの線幅は同程度です。 当社では現在単電極DBRレーザのみをご提供しております。

結論
ECL、DFB、VHG、DBR半導体レーザは、設計されたチューニングレンジで単一周波数を発振します。 ECLレーザは、DFBやDBRレーザよりも幅広い波長の選択が可能となります。 モードホップする傾向がありますが、3種類のうち1番狭い線幅(<1 MHz)をもたらします。 適切に設計された機器では、ECLレーザによって超広帯域幅 (>100 nm)をもたらすことも可能です。

DFBレーザは4種類のレーザの中で最も安定した単一周波数レーザです。 DFBのレーザーチューニングレンジ(<5 nm)内ではモードホップフリーの性能を発揮するため、単一周波数レーザとして最もご要望の多いレーザです。 DFBレーザ固有のグレーティングフィードバック構造のため、光出力は3つの中で最も低くなっております。

VHGレーザは、広い範囲の温度および電流にわたって、もっとも波長性能が安定しているため、DFBレーザの典型値よりも高いパワーが可能です。 この安定性によって、OEM用途でのご使用にも適しています。

単電極DBRレーザもDFBレーザ(<5 nm)に似た線幅とチューニングレンジですが、単電極DBRレーザはチューニング曲線で周期的なモードホップを発生します。

レーザの安全性とクラス分類

レーザを取り扱う際には、安全に関わる器具や装置を適切に取扱い、使用することが重要です。ヒトの目は損傷しやすく、レーザ光のパワーレベルが非常に低い場合でも障害を引き起こします。当社では豊富な種類の安全に関わるアクセサリをご提供しており、そのような事故や負傷のリスクの低減にお使いいただけます。可視域から近赤外域のスペクトルでのレーザ発光がヒトの網膜に損傷を与えうるリスクは極めて高くなります。これはその帯域の光が目の角膜やレンズを透過し、レンズがレーザーエネルギを、網膜上に集束してしまうことがあるためです。

Laser GlassesLaser CurtainsBlackout Materials
Enclosure SystemsLaser Viewing CardsAlignment Tools
Shutter and ControllersLaser Safety Signs

安全な作業および安全に関わるアクセサリ

  • クラス3または4のレーザを取り扱う場合は、必ずレーザ用保護メガネを装着してください。
  • 当社では、レーザのクラスにかかわらず、安全上無視できないパワーレベルのレーザ光線を取り扱う場合は、ネジ回しなどの金属製の器具が偶然に光の方向を変えて再び目に入ってしまうこともあるので、レーザ用保護メガネを必ずご使用いただくようにお勧めしております。
  • 特定の波長に対応するように設計されたレーザ保護眼鏡は、装着者を想定外のレーザ反射から保護するために、レーザ装置付近では常に装着してください。
  • レーザ保護眼鏡には、保護機能が有効な波長範囲およびその帯域での最小光学濃度が刻印されています。
  • レーザ保護カーテンレーザー安全保護用布は実験室内での高エネルギーレーザの遮光にご使用いただけます。
  • 遮光用マテリアルは、直接光と反射光の両方を実験装置の領域に封じ込めて外に逃しません。
  • 当社の筺体システムは、その内部に光学セットアップを収納し、レーザ光を封じ込めて危険性を最小限に抑えます。
  • ピグテール付き半導体レーザは、他のファイバに接続、もしくは他のファイバとの接続を外す際には、レーザ出力をOFFにしてください。パワーレベルが10 mW以上の場合には特にご注意ください。
  • いかなるビーム光も、テーブルの範囲で終端させる必要があります。また、レーザ使用中には、研究室の扉は必ず閉じていなければなりません。
  • レーザ光の高さは、目線の高さに設定しないでください。
  • 実験は光学テーブル上で、全てのレーザービームが水平を保って直進するように設定してください。
  • ビーム光路の近くで作業する人は、光を反射する不要な装飾品やアクセサリ(指輪、時計など)をはずしてください。
  • レンズや他の光学装置が、入射光の一部を、前面や背面で反射する場合がありますのでご注意ください。
  • あらゆる作業において、レーザは必要最小限のパワーで動作するようにご留意ください。
  • アライメントは、可能な限りレーザの出力パワーを低減して作業を行ってください。
  • ビームパワーを抑えるためにビームシャッタフィルタをお使いください。
  • レーザのセットアップの近くや実験室には、適切なレーザ標識やラベルを掲示してください。
  • クラス3Rやクラス4のレーザ(安全確保用のインターロックが必要となるレーザーレベルの場合)で作業する場合は、警告灯をご用意ください。
  • ビームトラップの代用品としてレーザービュワーカードを使用したりしないでください。

 

レーザ製品のクラス分け

レーザ製品は、目などの損傷を引き起こす可能性に基づいてクラス分けされています。国際電気標準会議(The International Electrotechnical Commission 「IEC」)は、電気、電子工学技術関連分野の国際規格の策定および普及を行う国際機関で、IEC60825-1は、レーザ製品の安全性を規定するIEC規格です。レーザ製品のクラス分けは下記の通りです

ClassDescriptionWarning Label
1ビーム内観察用の光学機器の使用を含む、通常の条件下での使用において、安全とみなされているクラス。このクラスのレーザ製品は、通常の使用範囲内では、人体被害を及ぼすエネルギーレベルのレーザを発光することがないので、最大許容露光量(MPE)を超えることはありません。このクラス1のレーザ製品には、筐体等を開かない限り、作業者がレーザに露光することがないような、完全に囲われた高出力レーザも含まれます。 Class 1
1Mクラス1Mのレーザは、安全であるが、望遠鏡や顕微鏡と併用した場合は危険な製品になり得ます。この分類に入る製品からのレーザ光は、直径の大きな光や拡散光を発光し、ビーム径を小さくするために光を集束する光学素子やイメージング用の光学素子を使わない限り、通常はMPEを超えることはありません。しかし、光を再び集光した場合は被害が増大する可能性があるので、このクラスの製品であっても、別の分類となる場合があります。 Class 1M
2クラス2のレーザ製品は、その出力が最大1 mWの可視域での連続放射光に限定されます。瞬目反射によって露光が0.25秒までに制限されるので、安全と判断されるクラスです。このクラスの光は、可視域(400~700 nm)に限定されます。 Class 2
2Mこのクラスのレーザ製品のビーム光は、瞬目反射があるので、光学機器を通して見ない限り安全であると分類されています。このクラスは、レーザ光の半径が大きい場合や拡散光にも適用されます。 Class 2M
3Rクラス3Rのレーザ製品は、直接および鏡面反射の観察条件下で危険な可視光および不可視光を発生します。特にレンズ等の光学機器を使用しているときにビームを直接見ると、目が損傷を受ける可能性があります。ビーム内観察が行われなければ、このクラスのレーザ製品は安全とみなされます。このクラスでは、MPE値を超える場合がありますが、被害のリスクレベルが低いクラスです。可視域の連続光のレーザの出力パワーは、このレベルでは5 mWまでとされています。 Class 3R
3Bクラス3Bのレーザは、直接ビームを見た場合に危険なクラスです。拡散反射は通常は有害になることはありませんが、高出力のクラス3Bレーザを使用した場合、有害となる場合もあります。このクラスで装置を安全に操作するには、ビームを直接見る可能性のあるときにレーザ保護眼鏡を装着してください。このクラスのレーザ機器にはキースイッチと安全保護装置を設け、さらにレーザ安全表示を使用し、安全照明がONにならない限りレーザがONにならないようにすることが求められます。Class 3Bの上限に近いパワーを出力するレーザ製品は、やけどを引き起こすおそれもあります。 Class 3B
4このクラスのレーザは、皮膚と目の両方に損傷を与える場合があり、これは拡散反射光でも起こりうるとみなされています。このような被害は、ビームが間接的に当たった場合や非鏡面反射でも起こることがあり、艶消し面での反射でも発生することがあります。このレベルのレーザ機器は細心の注意を持って扱われる必要があります。さらに、可燃性の材質を発火させることもあるので、火災のリスクもあるレーザであるとみなされています。クラス4のレーザには、キースイッチと安全保護装置が必要です。 Class 4
全てのクラス2以上のレーザ機器には、上記が規定する標識以外に、この三角の警告標識が表示されていなければいけません。 Warning Symbol

Video Insights(How-to動画集):ピグテール付きバタフライパッケージ型半導体レーザのセットアップ

バタフライパッケージ型の半導体レーザは、TECコントローラと電流コントローラ付きのマウントに取り付けることにより、コンパクトなパッケージで精密な制御が可能となります。このマウントにより、レーザの取り扱いはより簡単で安全になりますが、レーザをマウントに取り付ける際には様々な注意が必要です。こちらの動画では半導体レーザの取り付けや設定に関するガイドとなっています。始めに様々な関連部品について説明し、温度制御、最大電流リミット設定など、レーザ操作に必要な手順をご紹介します。

 

仕様の範囲内でご使用いただく限り、半導体レーザの製品寿命は非常に長いものです。ほとんどの故障は、不適切に取り扱われた場合や最大定格値を超えて動作した場合に生じています。半導体レーザは非常に静電気に敏感なデバイスであるため、取り扱う際は適切な静電気防止製品を使用する必要があります。静電気に非常に敏感なため、半導体レーザはパッケージ開封後の返品を受け付けておりません。未開封の場合のみ全額返金いたします。

取扱いならびに保管に関する注意点

半導体レーザは、静電気放電(ESD)による損傷の可能性が非常に高いため、取扱い時は以下の点にご注意ください。

リストストラップ
半導体レーザを取り扱う際には、必ず接地用ESDリストストラップをご使用ください。

静電気防止マット
常に接地用ESDマットの上で作業してください。

半導体レーザの保管
使用していない時はレーザのリード端子を短絡させると静電気放電による損傷を防ぐことが出来ます。

使用上の安全遵守事項

適切なドライバの使用
半導体レーザを使用するときは、オーバードライブを防止するためにも駆動電流と電圧を精密に制御する必要があります。またレーザードライバは、電源ラインのサージ等の過渡的で急激な変化を吸収し、半導体レーザを守ります。用途に応じたレーザードライバをお選びください。汎用的な電流制限抵抗器付きの定電圧電源(直流電源)は、半導体レーザを防御するのに十分な制御機能が備わっていないのでご使用にならないでください。

パワーメータ
半導体レーザと電流電源(ドライバ)を組み合わせた系のレーザ出力を較正する際には、NISTトレーサブルなパワーメータを使用してレーザの出力を正確に計測してください。通常、半導体レーザを光学系に組み込む前に、レーザの出力を直接計測するのがもっとも安全です。これができない場合には、レーザ直後の出力を推定する際、必ず光損失(伝送損失や開口絞りなど)を考慮してください。

反射について
半導体レーザの前方にある光学系の中にレーザに対面するような平面があると、レーザーエネルギの一部分が反射され、レーザ内のモニタ用フォトダイオードに戻ってしまい、誤った高いフォトダイオード電流値が計測される場合があります。その状態でシステム内の光学部品が移動され、モニタ用フォトダイオードへのエネルギの後方反射がなくなった場合、光出力を一定に維持するフィードバックループがフォトダイオード電流の低下を感知します。その結果、レーザードライバの電流を上げる制御が自動的に行なわれ、半導体レーザのオーバードライブにつながる可能性があります。後方反射はその他にも故障や半導体レーザの損傷を招くことがあります。これを防ぐため、光学部品のすべての面を光軸に対して5~10°の角度で傾けるように配置してください。また必要に応じて光アイソレータを使用し、レーザへの直接的なフィードバックを減衰するようにしてください。

ヒートシンク
半導体レーザの寿命は動作温度に対して反比例します。半導体レーザは必ず適切なヒートシンクを取り付けてレーザーパッケージから余分な熱を除去してください。

電圧ならびに電流のオーバードライブについて
各半導体レーザの仕様書に記載されている最大電圧ならびに電流を一時的にでも超えないようご注意ください。また、逆方向電圧については3 Vでも半導体レーザを損傷する可能性があります。

静電気放電(ESD)に敏感なデバイス
半導体レーザは駆動時であってもESDによる損傷を受けやすいデバイスです。静電気放電によるダメージは、半導体レーザとドライバ間に使用するインターフェイスのケーブルを長くしている場合、インダクタンスによりさらに起こりやすくなります。半導体レーザならびに半導体レーザを取り付けた機器を静電気にさらさないよう常にご注意ください。

ON/OFF時ならびに電源ラインを共通にする他の機器に起因する過渡現象
半導体レーザは応答が高速なため、 1 µs未満の過渡電流でもダメージを受ける場合があります。はんだごて、真空ポンプ、蛍光ランプなどの高電流機器の使用時には過渡的に過大な負荷がかかる場合があります。そのため半導体レーザを駆動する際は必ずサージ防止付きコンセントをご使用ください。

半導体レーザについてご質問がございましたら当社までお問い合わせください。


Posted Comments:
Lawrence Trask  (posted 2021-11-09 12:30:45.357)
Greetings, we are wondering if these lasers can be used as a slave laser for optical injection locking. If not, would you have any suggestions on a semiconductor laser in a butterfly package that can be used as a slave laser for optical injection locking? I did not see anything that specifies a built in isolator, but wasn’t sure if there are other things that may prevent optical injection locking using these lasers. Our wavelength of interest is at 1550 nm.
YLohia  (posted 2021-11-12 03:55:22.0)
Hello, thank you for contacting Thorlabs. The SFL1550P laser has not been tested in an optical injection locking application and is not intended to be used in a standard OIL scheme due to the integrated isolator. One of our Fabry-Perot laser diodes such as the FPL1009P may be a better fit, but please note that these have not been tested for such an application by Thorlabs either.
Michael Thewalt  (posted 2021-04-29 17:37:55.34)
We are looking for an external cavity diode laser similar to this but at 1326 nm
YLohia  (posted 2021-04-30 09:59:51.0)
Thank you for contacting Thorlabs. Unfortunately, we don't offer lasers like the SFL1550P at 1326 nm (or similar) at the moment. That being said, we are currently working on offering a TLX3 tunable laser for the O-band in the near-future. This will be similar to the TLX1 (https://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=9997) and will cover your 1326 nm requirement with linewidth: < 500 MHz.
user  (posted 2021-04-07 01:17:30.33)
Hello, We are using SFL 1550P in a black box with variable current. I plotted current (mA) vs Power and observed that the power jumped from uW (at 62mA) to mW (63mA) and thus I took threshold current as 62mA. However, the specs says that threshold current is 50mA. Which threshold value i must take? Please reply.
YLohia  (posted 2021-04-08 10:31:14.0)
Hello, thank you for contacting Thorlabs. The 50 mA listed on the website is the typical spec for threshold current. This value changes from unit to unit (and is also dependent on the operating temperature of the device). For your purposes, please use 62 mA.
Samrat Sarkar  (posted 2021-03-23 14:17:21.81)
Hello Yash, We are using SFL1500P with a laser diode driver and TEC controller board. When the laser is fed to a Mach Zehnder Interferometer, the interference is not stable at all, the power at both the ports of the MZI fluctuates. Please suggest us what we can do to deal with this issue and also send the phase noise, frequency noise, RIN PSDs. Also share the linewidth characteristics graph.
YLohia  (posted 2021-03-30 10:44:12.0)
Hello, unfortunately, we do not have phase noise, frequency noise, or RIN PSD plots for this laser. I have reached out to you directly to discuss further.
YLohia  (posted 2021-04-01 11:00:13.0)
Hello, thank you for contacting Thorlabs. If you're not observing interference in a well-aligned interferometer, you're either attempting to use a laser with a lower coherence length than your MZI path length or your laser is in a mode-hop (and therefore has a broader linewidth). Please try running the laser at a few different operating temperature / current combinations. For example, keep the current the same (228 mA) and then cycle the temperature down in 1 C decrements from 31 C to 25 C. If you don't see any differences in performance, try the same procedure at various other drive currents (change them in intervals of 25 mA for example). The SFL1550P can be prone to mode-hops, so if you're in a state that has one, that could explain the problem. If you have a fiber-based isolator, I would suggest plugging that in right after the laser output in case there is some instability caused by backreflections in the system. Unfortunately, we don't have phase noise/frequency noise info. Ultimately, the final parameter (if you're only looking at the performance of the laser) that could have an impact on the interference is the linewidth (which, of course, depends on the phase noise, but it is the final easily parameter) since that affects the coherence length.
user  (posted 2020-11-18 16:41:36.537)
Does SFL1550S have a maximum operating current or maximum output power limit?
YLohia  (posted 2020-11-18 10:22:33.0)
Thank you for contacting Thorlabs. These units are serialized and individually tested. Each unit comes with its own maximum current spec.
Jae Cheul Lee  (posted 2020-10-26 00:01:42.63)
Hi, Recently we bought your SFL1550P with beam collimator. I wonder you have the beam profile from the collimator output measured or expected? Look forward to hearing from you soon.
YLohia  (posted 2020-10-26 02:30:12.0)
Hello, thank you for contacting Thorlabs. Which collimator did you purchase with this laser? Please note that the laser is single-mode PM pigtailed, so the fiber acts as a spatial filter producing nearly M^2 = 1 beam quality.
Demian Biasetti  (posted 2019-10-24 04:31:41.95)
Dear Thorlabs, we (Max Born Insitute, Germany) have recentely acquired a SFL 1550P Polarization mantaining laser diode but I can not find at any place which is the polariy that a must put in the LDC205C (Thorlabs) current controller (AG or CG). In the manual of Laser Diode Mount for 14-Pin Butterfy, where I inserted the Type I pin configiration card there is also no information about this. Another question is what does the "range" (in mA) of the single mode operation table, means. For different temperatures correspond different current and a ranges for single mode operation. Are the different current values the centers of their corresponding range (that appear in the next column of the table) to operate in single mode? in that case, I must tune the wavelenght. It is better that I do it just by changing the current an follow the linear dependence? Thank you.
YLohia  (posted 2019-10-28 12:06:02.0)
Hello, thank you for contacting Thorlabs. The grounding should be set to AG as shown in the "Pin Diagrams" tab of the LM14S2 mount that is intended to be used with this diode: https://www.thorlabs.com/images/TabImages/LM14S2_type1_D1-600.gif. The "Current" column in the serialized SFL specsheet is the centerpoint of the range and then the single mode range is +/- (Range/2).
Supriyo Babul  (posted 2019-07-10 06:43:43.357)
Dear Thorlabs, What is the constant of thermistor(β) of the used thermistor inside SFL1550P LASER module?
YLohia  (posted 2019-07-10 09:31:52.0)
Hello, thank you for contacting Thorlabs. The Beta value for this thermistor is around 3870 at 25 degrees C. Alternately, the Steinhart Coefficients are: A: 1.129241E-03; B: 2.341077E-04; C: 8.775468E-08;
user  (posted 2019-06-11 14:32:31.68)
How is this laser different from the DBR lasers (which look the same) in your product portfolio? Does the fiber pigtail contain a Bragg grating, which provides the feedback making it an external cavity laser? Or is the Bragg reflector inside the butterfly package, but not on the same chip as in DBR lasers?
YLohia  (posted 2019-06-12 04:24:05.0)
Hello, thank you for contacting Thorlabs. The DBR lasers have a Bragg reflector coated directly onto the gain chip, whereas the SFL series uses a separate grating mounted within the butterfly package (separated from the gain chip). We are currently in the process of releasing our Ultra Low Noise laser which will use a fiber-bragg grating to create single-frequency operation at 1550 nm. If you want more information about that, please feel free to reach us at techsupport@thorlabs.com.
Xiaoguang Sun  (posted 2019-03-18 08:15:31.74)
I have an SFL1550P, SN SFL 10901. I lost the measured data with the laser, can you send it to me?
YLohia  (posted 2019-04-08 11:01:18.0)
Hello, you can request serialized spec sheets for our laser diodes by emailing us at techsupport@thorlabs.com. We have reached out to you directly with this information.
akg  (posted 2018-08-30 03:13:19.953)
Dear Thorlabs, I am looking for a Laser Diode at 1550nm. I have to operate it in CW mode without any modulation (I will use external modulation). However I need extremely narrow line-width as I intend to use in interferometry application for Quantum Key Distribution. I don't require wavelength tunability. Will SFL1550S be a good fit there and you suggest a better laser diode from Thorlabs. I am not interested in high optical power. Sincerely, Atul
YLohia  (posted 2018-09-17 10:29:37.0)
Dear Atul, thank you for contacting Thorlabs. The SFL1550S will be the best fit as a single laser diode that we currently offer. We do, however, also sell the TLX1 benchtop source which is a tunable laser that covers the 1528 - 1566nm range. The typical linewidth here is 10kHz.
xhyang  (posted 2018-04-25 08:46:33.46)
带尾纤的外腔(ECL)单频激光器,蝶形封装 https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=4934&pn=SFL1550P 上述产品的频率稳定性如何,如每天或每小时的频率漂移范围
YLohia  (posted 2018-05-02 08:44:40.0)
Hello, thank you for contacting Thorlabs. Unfortunately, we do not have this type of reliability data outside of what is given in the manual. The stability mostly depends on the mounting and drive conditions and is generally a system-level spec. Wavelength will drift with current and, to a greater extent, with the temperature. The tuning coefficients are given in the manual. The achievable linewidth will also depend on the noise of the current source. The system should be isolated from temperature changes, vibrations, etc. for optimal performance.
Timohodik  (posted 2018-02-06 09:40:46.853)
Dear Thorlabs, Could you please provide information on lifetime in hours for SFL1550P and CLD1015? In the case of by-the-book operation, of course. Sincerely yours, Timophey
YLohia  (posted 2018-02-26 09:10:42.0)
Hello Timophey, thank you for contacting Thorlabs. While we have not performed any rigorous lifetime testing on the fully packaged laser SFL1550P, the component InP laser chip is very robust and advanced aging studies have estimated the chip lifetime at tens of years of continuous use before failure or degradation under normal operating conditions. In addition, we have had hundreds of units of SFL1550P in the field over the past several years without signs of failure or a high rates of return. Long-term performance may depend on environmental conditions. Unfortunately, we currently do not have the lifetime information/testing for CLD1015. We do, however, anticipate a high durability with this unit due to the very low percentage of RMAs processed since the release of this item in 2012.
bsvikram  (posted 2017-05-23 01:10:11.363)
Hi, We wanted to know the highest frequency at which SFL1550S can be current modulated and whether this can be done with CLD 1015 mount. We would like to modulate the current at least at few MHz.
nbayconich  (posted 2017-06-16 08:13:21.0)
Thank you for contacting Thorlabs. The SFL1550S ECL laser diode can be directly modulated up to 10 Mhz but the CLD1015 can only directly modulate a butterfly laser diode package up to 250Khz at 3 dB. Modulating at high frequencies can change the frequency spectrum of the diode but a few Mhz should not change the spectrum. Another way to modulate the SFL1550S ECL is to use an external modulator. A Techsupport representative will contact you directly with more information.
kkmion  (posted 2016-09-16 17:07:39.433)
can you supply the Pigtailed External Cavity (ECL) Single-Frequency Lasers at wavelength of 1064 nm?
jlow  (posted 2016-09-20 02:22:59.0)
Response from Jeremy at Thorlabs: I will contact you directly to discuss about this quote.
zsolt.kis1  (posted 2015-09-08 06:17:48.063)
Dear Thorlabs, I would like to use the SFL1150P diode laser in a pulsed mode with an appropriate driver. The driver I would use is capable to modulate the laser current up to 50MHz. My idea is to modulate the laser current between just below the laser threshold and at some current above the threshold, hence I want to create pulses in this way. The pulse width is supposed to be 100-200 ns. What is the response of your laser to such driving ? Best Regards, Zsolt Kis HAS Wigner RCP
jlow  (posted 2015-09-18 11:11:19.0)
Response from Jeremy at Thorlabs: We have a section in the manual (Section 3.4) discussing about the frequency modulation bandwidth. We will contact you directly to provide more information on this.
matthias  (posted 2014-10-15 19:29:21.68)
Hi. Can you produce a version of the SFL1550P with a center wavelength of 1560 nm?
jlow  (posted 2014-10-16 01:30:24.0)
Response from Jeremy at Thorlabs: We can quote this and we will contact you directly for the quote. You can also send RFQ to techsupport@thorlabs.com.
pejr  (posted 2014-08-14 16:28:01.177)
Hi. Is the Thorlabs' External Cavity (ECL) Single-Frequency Laser Diode at a custom wavelength of 780.0 nm or 785.0 nm possible? Linewidth of <100 kHz to 500 kHz (@10 millisecond measurement time) is also required. Desired output power >35 mW.
jlow  (posted 2014-08-19 11:36:13.0)
Response from Jeremy at Thorlabs: We do not have the SFL for 780nm range in a butterfly package at the moment. We do have the TLK-L780M which might be suitable for your application. We will contact directly to discuss about this.
hallt  (posted 2013-08-07 12:59:58.073)
Hi. I would like a very very low intensity noise laser. I was thinking of using your SFL1550S with the CLD1015 controller as you suggest. Could you give me an idea of how much noise I could expect over a 100 kHz-100 MHz using this configuration? thanks.
tschalk  (posted 2013-08-09 07:57:00.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. We specify the noise and ripple of the CLD1015 with 30µA without noise reduction filter and 15µA with noise reduction filter (10Hz to 10MHz, RMS). A better solution for low noise applications would be an LDC2xxC, which can be found here: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10. The LDC205C, for example, delivers 500mA laser current and the noise without ripple is <3µA (10Hz to 10MHz, RMS) and the ripple is <2µA (50/60Hz, RMS). I will contact you with more detailed information.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput
Power
Operating
Current
Operating
Voltage
Beam
Divergence
Spatial
Mode
Package
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single ModeØ5.6 mm
L405P150405 nm150 mW138 mA4.9 VSingle ModeØ3.8 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
L450G1447 nm3000 mW2000 mA5.2 V30°MultimodeØ9 mm
LP450-SF15450 nm15 mW85 mA5.5 V--Single ModeØ9 mm, SM Pigtail
PL450B450 nm80 mW75 mA5.2 V4 - 7.5°18 - 25°Single ModeØ3.8 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single ModeØ9 mm, SM Pigtail
PL520520 nm50 mW250 mA7.0 V22°Single ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single ModeØ5.6 mm
HL6312G635 nm5 mW55 mA<2.7 V31°Single ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW70 mA<2.7 V31°Single ModeØ9 mm
HL6322G635 nm15 mW85 mA<2.7 V30°Single ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.3 V21°Single ModeØ5.6 mm
HL6323MG639 nm30 mW95 mA2.3 V8.5°30°Single ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.4 V10°21°Single ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW125 mA2.5 V10°21°Single ModeØ5.6 mm
HL6366DG642 nm80 mW155 mA2.5 V10°21°Single ModeØ5.6 mm
HL6385DG642 nm150 mW280 mA2.6 V17°Single ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW65 mA2.6 V8.5°22°Single ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW75 mA2.3 V21°Single ModeØ5.6 mm
HL6738MG690 nm30 mW90 mA2.5 V8.5°19°Single ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
HL7302MG730 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single ModeØ5.6 mm
LPS-PM785-FC785 nm6.25 mW65 mA---Single ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW120 mA2.0 V16°Single ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single ModeØ9 mm, SM Pigtail
L785H1785 nm200 mW220 mA2.5 V8.5°16°Single ModeØ5.6 mm
FPL785P785 nm200 mW500 mA2.1 V--Single ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
ML620G40805 nm500 mW650 mA1.9 V34°MultimodeØ5.6 mm
L808P010808 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L808P030808 nm30 mW65 mA2 V10°30°Single ModeØ5.6 mm
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single ModeButterfly, SM Pigtail
LD808-SE500808 nm500 mW750 mA2.2 V14°Single ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single ModeØ9 mm
LD830-MA1W830 nm1 W1.330 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
L850VH1850 nm1 mW2 mA2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single ModeØ5.6 mm
LP850-SF80850 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
L852P100852 nm100 mW120 mA1.9 V28°Single ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single ModeØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
L904P010904 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-915-0300915 nm300 mW370 mA1.9 V28°Single ModeØ9 mm
LP940-SF30940 nm30 mW90 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
BL976-SAG300976 nm300 mW470 mA2.0 V--Single ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single ModeØ5.6 mm
L9805E2P5980 nm50 mW95 mA1.5 V33°Single ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single ModeØ9 mm
M9-A64-03001064 nm300 mW390 mA1.7 V28°Single ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW20 mA1.1 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single ModeButterfly, PM Pigtail
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.1 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single ModeButterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyTwo-Tab C-Mount
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA13 V6 mrad (0.34°)6 mrad (0.34°)Single ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA13 V6 mrad (0.34°)6 mrad (0.34°)Single ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW<500 mA10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single ModeD-Mount
QF4550CM14.55 µm (FP)450 mW900 mA10.5 V30°55°Single ModeTwo-Tab C-Mount
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single ModeTwo-Tab C-Mount
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single ModeD-Mount
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single ModeHorizontal HHL
QD5500CM15.00 - 8.00 µm (DFB)40 mW<700 mA9.5 V30 °45 °Single FrequencyTwo-Tab C-Mount
QD5250CM15.20 - 5.30 µm (DFB)120 mW<660 mA10.2 V41°52°Single FrequencyTwo-Tab C-Mount
QD6500CM16.00 - 7.00 µm (DFB)40 mW<650 mA10 V35 °50 °Single FrequencyTwo-Tab C-Mount
QD7500CM17.00 - 8.00 µm (DFB)40 mW<600 mA10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW<600 mA11.5 V40°55°Single FrequencyD-Mount
QD8050CM18.00 - 8.10 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW<900 mA9.5 V40 °55 °Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW<600 mA10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single ModeTwo-Tab C-Mount
QD8650CM18.60 - 8.70 µm (DFB)50 mW<900 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD9500CM19.00 - 10.00 µm (DFB)60 mW<800 mA9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW<600 mA10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single ModeTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single ModeTwo-Tab C-Mount
QD10500CM110.00 - 11.00 µm (DFB)40 mW<600 mA10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.

1550 nm 単一周波数外部共振器レーザ

Item #InfoWavelengthPowerTypical Drive CurrentPackagePin CodeWavelength
Testeda
Spatial Mode
SFL1550Sinfo1550 nm40 mW300 mASM Butterfly14-Pin ButterflyYesSingle Modeb
SFL1550Pinfo1550 nm40 mW300 mAPM Butterflyc14-Pin ButterflyYesSingle Modeb
  • 現在ご提供可能な中心波長についてのご質問や、ご注文については、当社までご連絡ください。
  • レーザ出力は縦横ともにシングルモード。
  • スロー軸はコネクターキーに対してアライメントされています。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
SFL1550S Support Documentation
SFL1550S1550 nm, 40 mW, Butterfly External Cavity Laser, SM Fiber, FC/APC
¥370,143
Today
SFL1550P Support Documentation
SFL1550P1550 nm, 40 mW, Butterfly External Cavity Laser, PM Fiber, FC/APC
¥392,202
7-10 Days