"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='FEC11AB4A989482C2B5F2D18D347DE13';/* ]]> */
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
マウント済みフォトダイオード![]()
SM05PD2A FDS010 Photodiode Mounted in SM05 Externally Threaded Housing SM1PD1B FDS1010 Photodiode Mounted in SM1 Externally Threaded Housing Related Items ![]() Please Wait
![]() Click to Enlarge バイアスモジュールPBM42を使用して外部の逆バイアス電圧をフォトダイオードSM1PD2Aに印加 当社では、SM05シリーズおよびSM1シリーズの外ネジ付きチューブに取り付けられたGaP、Si、InGaAsまたはGeフォトダイオードをご用意しています。フォトダイオードの電気出力は、標準のSMAコネクタ(SM05PDシリーズ)またはBNCコネクタ (SM1PDシリーズ)を介して測定回路に簡単に接続することができます。 このページでご紹介しているマウント済みフォトダイオードは、ベンチトップ型フォトダイオード増幅器PDA200C、および当社の光電流測定モジュールと お使いいただけます。フォトダイオードにはAタイプ(カソード接地)とBタイプ(アノード接地)の配置があります。 各製品のピンコードは下記に掲載してあります。 いずれのモデルもパルス源またはCW光源の測定に適しています。本体の絶縁された外ネジを利用すれば、これらのフォトダイオードは、当社のあらゆるSM05およびSM1取付け用アダプタと接続可能になります。 各モデルの詳細については下表をご参照ください。またこれらのフォトダイオードは校正されていない点にご留意ください。 ただし、ご要望があればNISTトレーサブルな校正を行うことができます。 詳細は当社までお問い合わせください。また、当社ではマウント無しの校正済みフォトダイオードもご提供しています。 なお、ディテクタの検出部のエッジ部分の不均一性が、不要な静電容量の蓄積や抵抗効果を発生させてフォトダイオードからの出力に対する時間ドメインの応答性 を歪ませる場合があるので、その点にはご注意ください。 このような現象を防ぐためにも、フォトダイオードへの光が検出部の中心にしっかりと入射するように調整していただくことをお勧めしています。 これはディテクタ素子の前に集光レンズまたはピンホールを配置することで実行できます。 このフォトダイオードに外部バイアス電圧を印加する際にお使いいただけるバイアスモジュールPBM42(下記参照)をご用意しています。PBM42は、このページでご紹介しているすべてのフォトダイオードのアダプタに対応しています(右図参照)。 フォトダイオードの飽和限界、ノイズフロア、および受光面の均一性(または感度のばらつき)、暗電流の温度依存特性などに関して当社が実施した実験の結果は「実験データ」タブでご覧いただくことができます。「フォトダイオードチュートリアル」タブでは、フォトダイオードの動作、関連用語そして理論など一般的な情報がご覧いただけます。 当社では、Siフォトダイオードの応答の一様性を向上させるスペクトル特性平坦化フィルタもご用意しています。詳細はこちらをご覧ください。 フォトダイオードのチュートリアル動作原理接合型フォトダイオードは、通常の信号ダイオードと似た動作をする部品ですが、接合半導体の空乏層が光を吸収すると、光電流を生成する性質があります。 フォトダイオードは、高速なリニアデバイスで、高量子効率を達成し、様々な異なる用途で利用することが可能です。 入射光の強度に応じた、出力電流レベルと受光感度を正確に把握することが必要とされます。 図1は、接合型フォトダイオードのモデル図で、基本的な部品が個別に図示されており、フォトダイオードの動作原理が説明されています。
フォトダイオード関連用語受光感度 動作モード(Photoconductive vs. Photovoltaic) Photoconductive Photovoltaic 暗電流 暗電流の量はフォトダイオードの材料や検出部の寸法によっても左右されます。ゲルマニウム製のデバイスでは暗電流は高くなり、それと比較するとシリコン製のデバイスは一般的には低い暗電流となります。下表では、いくつかのフォトダイオードに使用される材料の暗電流の量と共に、速度、感度とコストを比較しています。
接合静電容量 帯域幅と応答性
ノイズ等価電力 この数式において、S/Nは信号対雑音比、Δf はノイズの帯域幅で、入射エネルギ単位はW/cm2となっています。詳細は、当社のホワイトペーパ「NEP – Noise Equivalent Power」をご参照ください。 終端抵抗 フォトダイオードの種類によっては、負荷抵抗が応答速度に影響を与える場合があります。 最大帯域幅を得るには、50Ωの同軸ケーブルを使用して、ケーブルの反対側の終端部で50Ωの終端抵抗器の使用を推奨しています。 このようにすることで、ケーブルの特性インピーダンスとマッチングできて共鳴が最小化できます。 帯域幅が重要ではない特性の場合は、RLOADを増大させることで、所定の光レベルに対して電圧を増大させることができます。 終端部が不整合の場合、同軸ケーブルの長さが応答特性に対して大きな影響を与えます。したがってケーブルはできるだけ短くしておくことが推奨されます。 シャント抵抗 直列抵抗 一般的な動作回路
上図の回路はDETシリーズのディテクタをモデル化したものです。 ディテクタは、適用される入射光に対して線形の応答を生成するために逆バイアス状態になっています。 ここで生成された光電流の量は、入射光に依存し、負荷抵抗を出力端子に接続すると、波形をオシロスコープで確認することができます。 RCフィルタの機能は、出力に雑音を載せてしまう可能性のある供給電力からの高周波雑音のフィルタリングです。
高利得用途でアンプとともにフォトディテクタを使用できます。動作時には、PhotovoltaicまたはPhotoconductiveモードのいずれも選択可能です。この能動回路はいくつかの利点があります:
GBPは利得帯域幅積であり、接合静電容量CDは増幅器静電容量と利得静電容量との和です。 チョッパ入力周波数の影響光導電体は時定数以内では一定の応答となりますが、PbS、 PbSe、HgCdTe (MCT)、InAsSbなどのディテクタにおいては、1/fゆらぎ(チョッパ入力周波数が大きいほどゆらぎは小さくなる)を持つため、低い周波数の入力の場合は影響が大きくなります。 低いチョッパ入力周波数の場合は、ディテクタの受光感度は小さくなります。周波数応答や検出性能は下記の条件の場合において最大となります。 下の図は、当社のマウント済みダイオードと組み合わせて使用できる電気回路例です。 SM05ネジ付き筐体が付いたフォトダイオードはSMAコネクタ型、SM1ネジ付き筐体が付いたフォトダイオードはBNCコネクタ型です。 下の図1では、カソード接地のフォトダイオードの回路例を示しています。 これは、正電圧出力の逆バイアス配置です。 図2では、アノード設置のフォトダイオードの回路例を示しています。 この例では、電源の極性は逆になっていますのでご注意ください。 図2も逆バイアス配置ですが、負電圧出力です。 図1および図2で示されている配置の大きな違いは、出力電圧の範囲です。 図1の出力は0~+Vボルトですが、図2は-V~0ボルトです。 フォトダイオード回路、値、理論についての詳細は、「フォトダイオードチュートリアル」タブをご参照ください。 SM05およびSM1ネジ付きマウント済みフォトダイオード、カソード接地![]() 図 1 SM05およびSM1ネジ付きマウント済みフォトダイオード、アノード接地![]() 図 2 まとめ フォトダイオードの飽和限界とノイズフロアここでは当社のシリコンフォトダイオードの飽和限界とノイズフロアの測定結果をご紹介しています。フォトダイオードはすべて同じように機能しますが、フォトダイオードのノイズフロアと飽和限界はセンサ温度、抵抗率、逆バイアス電圧、応答特性、そしてシステムの帯域幅など多くのパラメータの影響を受けます。この実験ではシリコンフォトダイオード光検出システムにおける逆バイアス電圧と負荷抵抗の影響について調べました。逆バイアスの増加により飽和限界値は上がりましたが、ノイズフロアへの影響はわずかでした。負荷抵抗を小さくするとノイズフロアは測定システムのノイズレベルまで下がりましたが、飽和限界値も下がりました。これらの結果は逆バイアス電圧および負荷抵抗を選択する上で考慮すべき点を示しており、また、検出システムを構成する際にはすべての部品から生じるノイズを考慮すべきであることを示しています。 実験にはシリコンフォトダイオードFDS100を使用しました。光源には光パワーが0~50 mWのファイバーピグテール付き半導体レーザからのコリメート光を使用しています。コリメート光はまずビームスプリッタに入射しますが、大部分の光は透過して試験対象のフォトダイオードに入射するようにし、反射された残りの光は参照用のパワーセンサに入射しました。この状態で負荷抵抗と逆バイアス電圧を様々に変化させ、フォトダイオードの応答特性を評価しました。 右ならびに下のプロット図では、様々なテストに対する測定結果をまとめています。これらのグラフにより、様々な逆バイアス電圧ならびに負荷抵抗下でのフォトダイオードの線形応答性、ノイズフロア、そして飽和限界の変化がご覧いただけます。図1は5 Vの逆バイアス電圧ならびに10 kΩの負荷抵抗におけるフォトダイオードの応答特性です。出力電圧が逆バイアス電圧に近づくと、フォトダイオードの応答は上限値で飽和します。応答の下限値であるノイズフロアは、暗電流ならびに負荷抵抗の熱雑音(ジョンソンノイズ)によるものです。図2は、1 kΩの負荷抵抗のもとで逆バイアス電圧を様々に変えた時のフォトダイオード出力の測定結果をまとめています。逆バイアス電圧を(仕様値内で)増加させると飽和限界値が上がることを示しています。図3では5 Vの逆バイアス電圧のもとで様々に負荷抵抗値を変えたときのフォトダイオード出力電圧の測定結果です。負荷抵抗を増やすと、電圧応答の傾斜が急峻になることを示しています。図4では0 Vの逆バイアス電圧のもとで、負荷抵抗値を様々に変えたときのノイズフロアの測定結果をまとめています。負荷抵抗が大きくなるとノイズフロアも上昇します。なお、1 kΩのデータでは、測定システム内の電圧ノイズによりジョンソンノイズの理論値以上の値が測定されました。5 Vの逆バイアス電圧でのノイズフロアの変化は全体的に僅かでした。この実験に使用された装置や実験結果のまとめはこちらをクリックしてご覧ください。 ![]() Click to Enlarge 図2. 出力電圧の逆バイアス電圧依存性 ![]() Click to Enlarge 図4. 様々な負荷抵抗における応答特性 ![]() Click to Enlarge 図3. 様々な負荷抵抗におけるノイズフロア フォトダイオードの感度均一性![]() Click to Enlarge 様々なフォトダイオードの感度測定に使用したセットアップ はじめに フォトダイオードにはそれぞれ仕様書に記載されている動作範囲があります。動作波長範囲内の光子は、結晶が吸収するのに適したエネルギを有しており、電子を励起してフォトダイオードを活性化します。感度均一性は、入射光の波長が動作範囲より長いか短いかによって異なる特性を示します。波長がフォトダイオードの動作範囲より短い場合には、光子のエネルギが大きすぎて、一般には結晶表面近くで吸収されてしまいます。そのためフォトダイオードを活性化することができず、受光感度が低下するとともに、加熱することにもなります。この感度低下の程度は、主に結晶表面の状態によって決まります。波長がフォトダイオードの動作範囲より長い場合には、光子のエネルギが小さすぎて、通常は結晶と相互作用せずに透過するか、あるいは結晶を加熱する原因になります。欠陥や結晶のミスアライメントがあると、この低エネルギの光子が受光感度に影響し、誤った測定結果につながる恐れがあります。 この実験では半導体材料や波長によって感度均一性がどのように変化するか、また、同一製品においてロット毎に感度にどのようなバラつきがあるのかを示しています。 手順 まず、波長を各フォトダイオードの典型的な感度曲線のピーク付近に設定し、走査を行いました。このとき受光面全体を含むように走査しているので、感度の位置依存特性を得ることができます。感度均一性の波長依存特性を見るために、Si、GeならびにInGaAsフォトダイオードの中から1つずつ抽出し、さらに2つの波長でテストしました。下記の走査結果はプロット図の原点(受光面の中心に対応)における感度で規格化しており、0.25%刻みの等高線図で表示しています。* プロット図をクリックすると図は拡大され、スケールバーが表示されます。なお、SM1PD5Aについては販売を終了しておりますが、プロット図はGeフォトダイオードの例として掲載しています。 実験結果についての制限 まとめ *SM05PD7Aは0.5%刻み、SM1PD2Aは0.2 %刻みの等高線図になっています。 結果
暗電流の温度特性いくつかのマウント無しディテクタについて、暗電流の温度特性を測定しました。暗電流とは、下記に説明するように光が入射されていないときのpn接合型フォトディテクタに流れる比較的小さい電流です。ここでは、シリコン(Si)、ゲルマニウム(Ge)、ガリウムリン(GaP)、そしてインジウムガリウムヒ素(InGaAs)の逆バイアス型フォトダイオードについて、25 °C~約55 °Cの温度範囲で測定しました。 ![]() 図1:pn接合型フォトダイオードの電流-電圧特性 pn接合型フォトダイオードの電流-電圧特性pn接合型フォトダイオードの電流-電圧特性は、図1に示すように順方向バイアスと逆方向バイアスの電圧でそれぞれ特徴があります。pn接合フォトダイオードに逆バイアス電圧をかけた場合、ダイオードにかかる電位差は電流の流れる方向に対して逆方向になります。 逆バイアス型フォトダイオードに対して光が入射していないときには、電流が流れないのが理想です。 しかし実際にはフォトダイオードの半導体材料内部でのランダムプロセスにより、常に電流キャリア(電子と正孔)が生成され、それにより電流が発生します。このような電流の発生プロセスは、電子と正孔の光生成によるものではありません。それらの多くは半導体材料内部の熱エネルギによって発生します[1]。この暗電流は一般的には小さいですが、フォトダイオードに逆バイアスをかけたときには光が照射されていなくても存在します。暗電流の大きさはフォトダイオードの素材構成によって異なり、熱的な発生プロセスの効率はディテクタのセンサーヘッドに使用される半導体の種類と結晶品質に依存します。暗電流は、フォトダイオードの温度が上昇にするにつれて大きくなることが予測されます。 フォトダイオードに光が照射されると、入射光により発生した電流(光電流)が暗電流に重畳されます。光電流のキャリアは入射光子のエネルギによって生成されます。照射される光の強度がある閾値を超えると、光電流は暗電流よりも大きくなります。光電流が暗電流よりも大きい場合には、光電流の大きさは全電流を測定した後、暗電流を差し引くことによって求められます。一方、光電流が暗電流より小さい場合には、その検出は不可能です。そのため、フォトダイオードの暗電流は最小化するのが望ましいことになります。 フォトダイオードに逆電圧をかけたとき、便宜上、ここまで暗電流と光電流は電圧に依存しないものとして述べてきましたが、実際には完全に電圧に依存しないわけではありません。ダイオードに光が照射されているかどうかにかかわらず、逆バイアス電圧が上昇するにつれて電流は増加します。また、逆バイアス電圧がある閾値を超えるとフォトダイオードは降伏し、急激に大きい電流が流れてダイオードが恒久的に損傷する可能性があります。 実験:筐体付きフォトダイオードの暗電流の測定4つの代表的なマウント無しディテクタ(SiディテクタFDS1010、GeディテクタFDG50、GaPディテクタFGAP71、InGaAsディテクタFGA10)について、その暗電流を25 °C~約55 °Cの温度範囲で測定しました。 ![]() Click to Enlarge 図2:カバーを外し、FGA10を設置した入れ子式金属ボックスの試験冶具。 どちらの箱も内側は黒色の断熱材で覆われています。 A:サーミスタ、B: FGA10、C: BNC-BNCフィードスルー、D: 外側のボックス、E: 内側のボックス、F:BNC-Triaxフィードスルー、G:BNC-BNCフィードスルー ![]() Click to Enlarge 図4: ホイルヒータ、温度コントローラTED8040、そしヒータを流れる電流を制御する2つの整流ダイオードを含む電子回路(本文参照)。 実験のセットアップ ディテクタは2つの入れ子式アルミニウム製ボックスで囲っています(図2はカバーを外した状態です)。1つのボックスのみでフォトダイオードを遮光することはできますが、実験ではEMIを遮断するために外側にもボックスを配置しています。ディテクタは内側のボックス内にあり、アンメータKeithley 6487と電気接続されています。ピコアンメータは5 Vの逆バイアスを供給し、出力電流信号を受信します。 ピコアンメータとフォトダイオード間の電気信号は、複数のケーブルとフィードスルーを介して2つのボックスを通過します。5 Vのバイアス電圧は、2つの金属製ボックスの壁の中にある同軸ケーブルとBNC-BNCフィードスルーを介してフォトダイオードに接続されています。フォトダイオードからの電流信号ラインは、内側のボックスの壁の中に組み込まれているBNC-TriaxフィードスルーのBNC端子に接続されています。信号は外側のボックス内のTriaxおよびTriax-Triaxフィードスルーを通過し、ピコアンメータKeithly 6487に向かいます。同軸ケーブルは遮蔽性能が低く、それを使用してピコアンメータへ信号を送るときにはディテクタからの信号にEMI源からのノイズが混入する場合があるため、Triaxケーブルが使用されています。外側のボックスは内側のボックスをEMIから遮蔽するので、信号がディテクタからBNC-Triaxフィードスルーに移動する際に発生するノイズは低減されます。 実験中のフォトダイオードの温度は、サーミスタを用いて連続的にモニタしました。 サーミスタは熱伝導テープでFDG50、FGAP71、FGA10のTO Canに隙間なく固定されています。FDS1010のフォトセンサはセラミック製の基板に取り付けられています。実験の際、サーミスタは基板の裏側にテープで固定しました。サーミスタと温度ロガーTSP01間の電気的接続にはBNCケーブルを使用し、BNC-BNCバルクヘッドフィードスルーを通じて入れ子式ボックスの外へ信号を取り出し、カスタム仕様のBNC-フォノジャックケーブルを使用して温度ロガーに接続しました。 この試験には標準品の筐体XE25C9をベースにしたカスタム仕様の温度チャンバが使用されました。温度チャンバは図3の上段に表示されています。筐体は底面と4つの壁を有し、内側と外側の全面に絶縁体が付いています。筐体の蓋はハードボードで作られており、XE25シリーズレールで縁取られています。ハードボードの内側には絶縁体が付いています。XE25C9の筐体の壁には6個のホイルヒータが装着され、6個の熱電冷却(TEC)コントローラTED8040を取り付けたPRO8000(図3の下段に設置)によって作動します。TED8040はそれぞれヒータおよびチャンバ内に取り付けられたサーミスタに接続されています。サーミスタから読み取った値をもとにヒータ電流が決定されます。チャンバはアクティブには冷却されません。その代りにヒータを駆動する電流を止め、さらにオプションとしてチャンバの蓋を開けて冷却します。 TED8040ユニットはTECに接続可能です。電流をある方向に流すと熱が発生し、それと逆方向に流すと冷却されます。このため、筐体の温度が設定値を超えた場合、実験セットアップ内のTED8040ユニットは駆動電流を切断することはしません。その代りに電流を逆方向に流し、冷却を行います。これに対し、ホイルヒータは電流の流れる方向に関わらず熱を発生します。駆動電流をヒータから迂回させるために、2つの整流ダイオードを有する電子回路(図4参照)が設計・内蔵されています。整流ダイオードは電流を1方向にのみ流します。サーミスタに表示される温度が設定よりも低い場合、電流は赤い矢印の方向に流れてヒータを通過し、熱が発生します。筐体の温度が設定よりも高くなった場合、コントローラTED8040は電流の方向を逆向きにし、青い矢印の方向に流れるようにします。この状態では、回路内の電流はヒータの方向へは流れず、チャンバは冷却されます。 実験結果 図5のデータ曲線は、測定された暗電流がフォトダイオードの構成材料によって異なることを示しています。暗電流値が低い順に:
最大値は最小値よりも6桁ほど大きくなっています。どのフォトダイオードも、温度が上昇すると暗電流も増加しています。グラフのひし形の点は25 °Cでの各ディテクタの暗電流の仕様値です。これらの点は25 °Cでの暗電流の最大値を示しています。各ダイオードは25 °Cではこの値よりも小さい値でなければなりませんが、25 °Cよりも高い温度ではこの仕様値よりも大きくなる場合があります。 実験結果についての制限事項 [1] J. Liu, Photonic Devices. Cambridge University Press, Cambridge, UK, 2005 ノイズ等価パワー(NEP)の温度特性いくつかのマウント無しフォトディテクタについて、ノイズ等価パワー(NEP)温度特性を測定しました。下のセクションで説明しているように、NEPはフォトディテクタの最小感度を示す一般的な測定基準です。 ここでは、シリコン(Si)、ゲルマニウム(Ge)、ガリウムリン(GaP)、そしてインジウムガリウムヒ素(InGaAs)の逆バイアスされたフォトダイオードについて、25 °C~55 °Cの温度範囲で測定しました。 ノイズ等価パワー(NEP)NEPの最も一般的な定義は、「1 Hzの出力帯域幅において信号対雑音比(SNR)が1となる入力信号のパワー」です。[1] 従って、NEPを求めるにはまず、フォトダイオードの最小ノイズを知る必要があります。光学信号をブロックしても、ディテクタ自体から発生したノイズはまだ存在します。フォトダイオードのノイズの主な原因としては、暗電流によるショットノイズとシャント抵抗による熱ノイズの2つがあります。 暗電流は、デバイスを流れる比較的小さな電流で、入射光がない状態でも存在します。暗電流についての詳細は「暗電流の温度特性」セクション内でご覧いただけます。ショットノイズは、電荷キャリアの量子化特性によって発生します。ディテクタに光が入射されていない場合は、公式を用いてディテクタの暗電流を算出することで決定できます。[2] ここでisはショットノイズ、Idは暗電流、qは電荷、fBWは帯域幅です。帯域幅は別のフォトダイオードと比較できるように1 Hzに設定します。 熱ノイズつまりジョンソンノイズは、電荷キャリアのランダムな熱運動によるものです。熱ノイズは装置の抵抗素子によってのみ発生します。フォトダイオードディテクタの場合、シャント抵抗を考慮に入れる必要があります。シャント抵抗はゼロバイアスのフォトダイオードのpn接合における抵抗です。言い換えると、ゼロ電圧地点におけるIV特性カーブの傾きの逆数です。ゼロ点での勾配を正確に算出することは難しいため、V = ±10 mVにおける電流を測定して勾配を算出するという手法が業界で一般的に認められています。これにより、シャント抵抗による熱ノイズRSHは下記の式で表されます: ここでitは熱ノイズ(電流として表されます)、kBはボルツマン定数、Tは温度、 RSHはシャント抵抗、fBWは帯域幅です。 ノイズの総量itotalはすべてのノイズ源の和となります: 注:この結果は、フォトダイオードの出力電流で表されるノイズの総量です。それに対して、NEPは入射した光パワーとして表されます。したがって、NEPの仕様値を比較するには、仕様の波長範囲における感度(典型値)を使用します: また、別のダイオードと比較する際に容易に計算できるよう、帯域幅を1 Hzに設定しました。 実験:暗電流およびシャント抵抗の測定パッケージされていない状態の代表的な4つのフォトダイオードのNEPを、25~55 °Cにおいて測定しました。測定には以下のディテクタを使用しました:SiディテクタFDS1010、GeディテクタFDG50、GaPディテクタFGAP71、InGaAsディテクタFGA10。 ![]() Click to Enlarge 図1: カバーを外し、FGA10を設置した入れ子式金属ボックスの試験冶具。 どちらの箱も内側は黒色の断熱材で覆われています。. A: サーミスタ、B:FGA10、C:BNC-BNCフィードスルー、D:外側ボックス、E:内側ボックス、F:BNC-Triaxフィードスルー、G:BNC-BNCフィードスルー ![]() Click to Enlarge 図3: 電子回路内のホイルヒータ、温度コントローラTED8040、抵抗ヒータを通過する2つの整流ダイオードの制御電流(本文参照)。 実験のセットアップ ディテクタは2つの入れ子式アルミニウム製ボックスで囲っています(図1はカバーを外した状態です)。1つのボックスのみでフォトダイオードを遮光することはできますが、実験ではEMIを遮断するために外側にもボックスを配置しています。ディテクタは内側のボックス内にあり、ピコアンメータKeithley 6487と電気接続されています。ピコアンメータは逆バイアスを供給し、出力電流信号を受信します。ピコアンメータとフォトダイオード間の電気信号は、複数のケーブルとフィードスルーを介して2つのボックスを通過します。バイアス電圧は、2つの金属製ボックスの壁の中にある同軸ケーブルとBNC-BNCフィードスルーを介してフォトダイオードに接続されています。フォトダイオードからの電流信号ラインは、内側のボックスの壁の中に組み込まれているBNC-TriaxフィードスルーのBNC端子に接続されています。信号は外側のボックス内のTriaxおよびTriax-Triaxフィードスルーを通過し、ピコアンメータKeithly 6487に向かいます。同軸ケーブルは遮蔽性能が低く、それを使用してピコアンメータへ信号を送るときにはディテクタからの信号にEMI源からのノイズが混入する場合があるため、Triaxケーブルが使用されています。外側のボックスは内側のボックスをEMIから遮蔽するので、信号がディテクタからBNC-Triaxフィードスルーに移動する際に発生するノイズは低減されます。 暗電流を測定する場合、バイアス電圧は5 Vに設定します。シャント抵抗を算出するには、バイアス電圧を+10 mVおよび-10 mVに設定して電流を測定します。 実験中のフォトダイオードの温度は、サーミスタを用いて連続モニタしました。サーミスタは熱伝導テープでFDG50、FGAP71、FGA10のTO Canに隙間なく固定されています。FDS1010のフォトセンサはセラミック製の基板に取り付けられています。実験の際、サーミスタは基板の裏側にテープで固定しました。サーミスタと温度ロガーTSP01間の電気的接続にはBNCケーブルを使用し、BNC-BNCバルクヘッドフィードスルーで入れ子式ボックスの外へ信号を取り出し、カスタム仕様のBNC-フォノジャックケーブルを使用して温度ロガーに接続しました。 この試験には標準品の筐体XE25C9をベースにしたカスタム仕様の温度チャンバが使用されました。温度チャンバは図3中の上段に表示されています。筐体は底面と4つの壁を有し、内側と外側の全ての面に絶縁体が付いています。筐体の蓋はハードボードで作られており、XE25シリーズレールで縁取られています。ハードボードの内側には絶縁体が付いています。XE25C9の筐体の壁には6個のホイルヒータが装着され、6個の熱電冷却(TEC)コントローラTED8040を取り付けたPRO8000(図2中の下段に設置)によって作動します。TED8040はそれぞれヒータおよびチャンバ内に取り付けられたサーミスタに接続されています。サーミスタから読み取った値をもとにヒータ電流が決定されます。チャンバはアクティブには冷却されません。その代りにヒータを駆動する電流を止め、さらにオプションとしてチャンバの蓋を開けて冷却します。 TED8040ユニットはTECに接続可能です。電流を一定の方向に流すと熱が発生し、逆方向に流すと冷却されます。このため、筐体の温度が設定値を超えた場合、実験セットアップ内のTED8040ユニットは駆動電流を切断することはしません。その代りに電流を逆方向に流し、冷却を行います。これに対し、ホイルヒータは電流の流れる方向に関わらず熱を発生させることができます。駆動電流をヒータから迂回させるために、2つの整流ダイオードを有する電子回路(図3参照)が設計・内蔵されています。整流ダイオードは電流を1方向にのみ流します。サーミスタに表示される温度が設定よりも低い場合、電流は赤い矢印の方向に流れてヒータを通過し、熱が発生します。筐体の温度が設定よりも高くなった場合、コントローラTED8040は電流の方向を逆向きにし、青い矢印の方向に流れるようにします。この状態では、回路内の電流はヒータの方向へは流れず、チャンバは冷却されます。 実験結果 図5で示されているように、ディテクタGaP、InGaAs、Siのシャント抵抗の測定値は比較的大きくなっているので、多くの場合、これを考慮する必要はありません。GeディテクタFDG50のシャント抵抗値は、高温においては比較的小さくなっています。このダイオードを高抵抗と共に使用する場合は、シャント抵抗を考慮に入れる必要があります。 図6では、各ダイオードのNEP計算値と温度の関係を示しています。NEPは、波長にによって変化する感度によって決まるため、ここでのNEPは右の表内に記載されているピーク感度を用いて算出されています。
図6のデータ曲線は、測定された暗電流がフォトダイオードの構成材料によって異なることを示しています。暗電流値が低い順に:
最大値は最小値よりも6桁ほど大きくなっています。どのフォトダイオードも、温度が上昇すると暗電流も増加しています。グラフのひし形の点は25 °Cでの各ディテクタの暗電流の仕様値です。これらの点は25 °Cでの暗電流の最大値を示しています。各ダイオードの暗電流およびNEPは25 °Cではこの値よりも小さい値でなければなりませんが、25 °Cよりも高い温度ではこの仕様値よりも大きくなる場合があります。 ![]() Click to Enlarge 図5: 4つのマウント無しフォトダイオードのシャント抵抗を本文中の数式を用いて算出 ![]() Click to Enlarge 図6: 4つのマウント無しフォトダイオードのNEPをショットノイズと熱ノイズの和で算出。 ひし形のデータ点は25 °Cでの各ディテクタのNEPの仕様値です。FGA10では、ピーク感度波長におけるNEPが規定されていないため、この仕様値のデータ点が表示されていません。 実験結果についての制限事項 [1] 当社のホワイトペーパ「NEP – Noise Equivalent Power」より [2] Quimby, Richard S. Photonics and Lasers: An Introduction. Wiley-Interscience, Hoboken, NJ, 2006, pp 241-244. ビームサイズとフォトダイオードの飽和![]() Click to Enlarge 図1: 入射パワーが一定のときの、出力電流の変化を規格化して表示。試験対象のフォトダイオード(DUT)であるFDS1010に入射するビーム径はレンズの焦点を調整して設定。 当社のシリコンフォトダイオードの飽和点とビームサイズの関係についての測定結果をご紹介します。ここでは、線形応答領域から1%の偏差が生じる状態で飽和と定義しています。図1に示されているように、ビームサイズが小さくなるとフォトダイオードが飽和する入射パワーレベルも小さくなります。飽和の変化がパワー密度によるものではないことを実証するために、計算と実験を数回追加して行っています。これらの結果は、当社のフォトダイオードパワーセンサS130Cのようなパワーセンサを用いてパワーの絶対値を測定するときは、ビームサイズを考慮に入れるべきだということを示しています。 実験ではマウント付きフォトダイオードSM1PD1Aを使用しました。この検出器はSM1シリーズネジ付き筐体にフォトダイオードFDS1010を取り付けたものです。光源には830 nmのスーパールミネッセントダイオードを使用しました。ビームスプリッタを用いて光の20%をモニタ用フォトダイオードに入射し、残りの光は集光レンズを通過させています。光パワーは積分球によって校正し、集光ビームのビームサイズは移動ステージに取り付けたビームプロファイラによって校正しました。校正後、ビームプロファイラを試験対象のデバイス(DUT)であるSM1PD1A(0 Vバイアス)と交換しました。負荷抵抗器を使わなくても済むように、出力電流はアンメータで測定しました。パワーを一定に保ちながらビーム径を0.06 mm~5 mmで連続的に変化させてデータを記録し、また1 mm~5 mm(5%のクリップレベルで測定)のビーム径に対して入射パワーを0.12 mW~5 mWで連続的に変化させて測定しました。 これらの測定結果をグラフで示しています。図1(右)は入射パワーを1 mWに固定して、ビーム径を連続的に変化させたときの線形応答からの偏差を示しています。図2(下)は異なるビーム径において入射パワーを連続的に変化させたときの線形応答からの偏差を示しています。 図1では、1 mWの入力においては、ビームサイズが300 µm未満になるとフォトダイオードは飽和することを示しています。図2では、ビーム径が2 mm以上になると実験を行ったパワーレベルでは飽和しないことを示しています。 これらの結果から、パワー密度が大きいことによる局所的な飽和は、利用可能なキャリア数が局所的に枯渇または減少することに起因するという1つの仮説を立てることができます。図3は、図2のパワーの測定値とビーム径からパワー密度を算出し、出力電流とパワー密度の関係をグラフ化したものです。もし、結果が局所的な飽和によるものだとすると、何れのビーム径においても飽和するパワー密度は同じであることが期待されます。しかし、結果はそうなっていません。 図3の結果ではビームサイズの変化と光パワー密度が連動しているので、別の実験として、ビームエリアの同一エンベロープ内においてセンサに入射するパワー密度を増加させ、それによって飽和点が変化するかどうかを調べました。具体的には、マイクロレンズアレイを用いてガウシアンビームをビームレットの配列に分割し、全ての光パワーを同じガウシアンエンベロープ内で複数の小さなスポットに集光しました。これによりパワー密度はより大きくなりますが、センサのリード線への電気的接続は同様のままです。図4は、図2の結果にマイクロレンズアレイによる結果を点線で重ねて示したものです。全てのビーム径において、元のガウシアンビームとほぼ同じ結果となっていることから、飽和は全体のビーム径に関係しており、パワー密度には依存しないことがわかります。実験データの詳細において、この実験結果はビームサイズによる飽和の変化がフォトダイオードの直列抵抗の変化によるものであるというScholze氏らの理論[1]を支持するものであることを論じています。 ![]() Click to Enlarge 図2: 1 mm~5 mmのビーム径において入射パワーを増大させた場合の直線応答からのパーセント偏差。1%の偏差レベルを水平の点線で示しています。 ![]() Click to Enlarge 図3: 1 mm~5 mmのビーム径における、規格化された出力電流とパワー密度との関係。このグラフは、飽和効果が同一のパワー密度で現れるわけではないことを示しています。 ![]() Click to Enlarge 図4: 2 mm~5 mmのビーム径における、規格化された出力電流と光パワーとの関係。フォトダイオードの前にマイクロレンズアレイ(MLA)を設置した場合(点線)と設置しなかった場合(実線)について示しています。 [1] F. Scholze, R. Klein, R. Muller, Linearity of silicon photodiodes for EUV radiation. 2004 Proc. SPIE 5374 926–34. 入射光パワーに対する有効逆バイアス電圧特性はじめに 回路の分析 Veff = V0 - iPD * (RP + RL) (1) フォトダイオードの有効バイアス電圧(Veff)は、電源電圧(V0)から、バイアスモジュールの抵抗(RP)と負荷抵抗(RL)の和に光電流 (iPD)を掛けた値を差し引いた値に等しくなります。 Veffが入射光パワー(P)によってどのように変化するかを見るために、上の式のiPDを定義に従って波長に依存するフォトダイオードの感度[ℜ(λ)]とPの積に置き換えます。 iPD = ℜ(λ) * P (2) 負荷抵抗にオームの法則を適用してiPD = VL / RLとすることで、上の式から ℜ(λ)(λ)は次のように書くことができます。 ℜ(λ) = VL / (P * RL ) (3) 負荷抵抗(VL)による電圧低下はPの増加量に比例すると仮定すると、 VLとP の変化量の比は次のように表されます。 m = Δ VL / Δ P (4) これらの式を組み合わせると、次の式が得られます。 Veff = V0 - (m / RL) * P * (RP + RL) (5) mの値は各フォトダイオードのVLおよびPの測定値から計算できるため、この式はPに応じたVeffの変化を示すモデルとして使用できます。 実験 結果 ![]() 図1:こちらの実験セットアップはフォトダイオードの有効電圧のモデルを検証するために使用されました。 ![]() Click to Enlarge 図2:バイアス電圧が印加されたフォトダイオードの電子回路図 ![]() Click to Enlarge 図3:左の式(5)のmを求めるために使用された入射光パワーと電圧の関係 About Our Lab Facts
下表は、当社のフォトダイオードおよびフォトコンダクタなどフォトディテクタの一覧です。 同一の列に記載されている型番の検出素子は同じです。 ![]() ![]() ![]()
![]() ![]() ![]()
![]() ![]() ![]() 特記のない限り全ての値は25 °Cにおいて測定されました。
![]() ![]() ![]()
![]()
PBM42は、外部電源からDCバイアス電圧をフォトダイオードに印加できるバイアスモジュールです。 当社のマウント済みフォトダイオード用に設計されており、外部電源からの入力バイアス電圧-25~+25 Vに対応可能で、最大帯域幅は350 MHz(使用するフォトダイオードによる)です。 バイアスモジュールの入力部にはBNCコネクタが付いており、BNCケーブルまたはBNCアダプタT3533を使用して同じコネクタが付いたあらゆるマウント済みフォトダイオードが接続可能です。 また、SMA-BNCケーブルやSMA-BNCアダプタT4288を使用すれば、SMAコネクタのマウント済みフォトダイオードも接続できます。 バイアスモジュールの出力部にはSMAコネクタ、DC電圧入力部には2.5 mmフォノジャックが付いています。 このモジュールには、一端に2.5 mmフォノプラグ、一端にワイヤ素線が付いた長さ914 mmのケーブルが付属します。 なお、フォトダイオードは、逆バイアスを印加して使用してください。 順バイアスを印加するとフォトダイオードが損傷する場合もあります。 カソード接地タイプのフォトダイオードを接続する場合のフォノプラグ先端は、プラス端子である必要があります。 アノード接地タイプを接続する場合のフォノプラグは、マイナス端子になります。 モジュールには低雑音の電源をご使用になることをお勧めします。 当社のマウント済みフォトダイオードの接地ならびに逆バイアス電圧に関しては、上の表をご覧ください。 周波数特性を最大限に引き出すためには、バイアスモジュールの出力部を50 Ωケーブルや、当社BNCターミネータのT4119のような50 Ω抵抗器で終端処理してください。 出力電圧に柔軟性を持たせたい場合には、可変ターミネータVT2もお使いいただけます。 PBM42のコンパクトな筐体は、コネクタを確実に絶縁し、フォトダイオードを保護するためにDelrin®材料としています。 また、筐体にはM4タップ穴が1つずつ付いており、「概要」タブでご説明している通り、当社のØ12 mm~Ø12.7 mm(Ø1/2インチ)ポストに取付け可能です。 詳しい内容については、バイアスモジュールPBM42の製品紹介ページをご参照ください。 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|