InGaAs増幅フォトディテクタ、自由空間光用
- Wavelength Ranges Between 800 - 2600 nm
- Maximum Bandwidths up to 1.5 GHz
- Sensitivities Down to Femtowatt Powers
- Fixed and Switchable Gain Versions
PDA10CS2
Switchable Gain
13 MHz Max Bandwidth
Application Idea
PDA Series Detector with Ø1" Lens Tube Attached to a 30 mm Cage System
PDA015C2
Fixed Gain
380 MHz Max Bandwidth
FPD310-FS-NIR
Switchable Gain
1.5 GHz Max Bandwidth
Please Wait
Item # | Wavelength Range | Bandwidth | NEP |
---|---|---|---|
Fixed Gain | |||
PDA015C2 | 800 - 1700 nm | DC - 380 MHz | 20 pW/Hz1/2 |
PDA05CF2 | 800 - 1700 nm | DC - 150 MHz | 12.6 pW/Hz1/2 |
PDF10C2 | 800 - 1700 nm | DC - 20 Hz | 7.5 x 10-3 pW/Hz1/2 |
PDA20C2 | 800 - 1700 nm | DC - 5 MHz | 22 pW/Hz1/2 |
PDA10D2 | 900 - 2600 nm | DC - 25 MHz | 10.1 pW/Hz1/2 |
FPD510-FS-NIR | 950 - 1650 nm | DC - 250 MHz | 3.2 pW/Hz1/2 |
FPD610-FS-NIR | 950 - 1650 nm | DC - 600 MHz | 6.6 pW/Hz1/2 |
Switchable Gain | |||
PDA20CS2a | 800 - 1700 nm | DC - 11 MHz | 1.95 - 61 pW/Hz1/2 |
PDA10CS2a | 900 - 1700 nm | DC - 13 MHz | 1.91 - 46 pW/Hz1/2 |
FPD310-FS-NIRb | 950 - 1650 nm | 1 - 1500 MHz | 14.1 pW/Hz1/2 |
特長
- 波長範囲:800~2600 nm
- 低ノイズ増幅器付き:利得は固定タイプと切り替え可能タイプをご用意
- 50 Ω以上の負荷インピーダンスに対応
- PDF10C2: 高負荷インピーダンスのみに対応
- FPDシリーズ:50 Ωの負荷インピーダンスのみに対応
- 自由空間光結合
当社では近赤外の波長域に感度のある自由空間光用インジウムガリウムヒ素(InGaAs)増幅フォトディテクタをご用意しております。当社の増幅フォトディテクタには、低ノイズトランスインピーダンス増幅器(TIA)が内蔵されており、またいくつかのディテクタには、後段にさらに電圧増幅器が付加されています。FPDシリーズの増幅フォトディテクタには、RF増幅器またはトランスインピーダンスアンプが内蔵されています。当社では最大帯域幅と全トランスインピーダンス利得が固定されている固定型と、利得を2または8段階で変えられる切り替え可能型をご用意しております。
増幅フォトディテクタとして、インパルス応答が1 nsで帯域幅が380 MHzのPDA015C2、雑音等価電力(NEP)が7.5 fW/Hz1/2の高感度なPDF10C2、利得(帯域幅)の組み合わせを1.51 kV/A(11 MHz)~4.75 MV/A(3 kHz)の間で8段階の切り替えが可能なPDA20CS2など、様々なご要望に沿った製品を揃えています。フェムトワットの感度を有するPDF10C2 は低周波数用のデバイスで、高インピーダンス(Hi-Z)の負荷のみに対応しています。その他のInGaAs増幅フォトディテクタは50 Ω~Hi-Zの負荷を接続できます。
Click to Enlarge
PDA05CF2と付属の±12 V電源。交換用の電源については下記をご覧ください。
PDAおよびPDFシリーズのディテクタには、SM05内ネジとSM1外ネジが付いています。各ユニットの筐体にはM4 x 0.7ネジの取付穴、またはM4 x 0.7ネジと#8-32ネジの両方に対応する取付け穴が付いています。詳細については下表の「Housing Features」の欄の画像をクリックするとご覧いただけます。ミリ・インチ両規格対応のタップ穴付き筐体についての詳細は「筐体の特長」タブでもご覧いただけます。
FPDシリーズのフォトディテクタは使いやすいパッケージに納められたInGaAs-PINフォトダイオードで、高利得・低ノイズのRF増幅器内蔵型(FPD310-FS-NIR)とトランスインピーダンス増幅器内蔵型(FPD510-FS-NIR、FPD610-FS-NIR)がございます。FPD310-FS-NIRは、特にパルス波形やRF信号などの低雑音での検出用としてお勧めいたします。このフォトディテクタは高利得・高帯域幅で、極めて早い立ち上がり時間と高い信号対雑音比が得られるように最適化されています。立ち上がり時間は0.5 nsで利得も2段階で切り替えられ、お客様の用途に適した特性が得られます。PD510-FS-NIRおよびFPD610-FS-NIRは増幅率が固定されており、それぞれ250 MHzおよび600 MHzまでの微小な光ビート信号を検出するうえで最大の信号対雑音比が得られるように最適化されています。それぞれの立ち上がり時間は、FPD510-FS-NIRで2 ns、FPD610-FS-NIRで1 nsです。これらのDC結合型デバイスの3 dB帯域幅は、FPD510-FS-NIRで200 MHz、FPD610-FS-NIRで500 MHzです。FPDシリーズディテクタはコンパクトなため、組み込み用途(OEM用途)にも適しています。FPDシリーズディテクタの筐体にはポスト取付け用にM4タップ穴が1つ付いています。
電源
当社のPDAおよびPDFシリーズの増幅フォトディテクタには、日本国内用の±12 V出力のリニア電源が付属します。交換用の電源も別途ご用意しております(下記をご覧ください)。増幅フォトディテクタの電源をオンにする際は、必ず筐体または電源ユニットの電源投入用スイッチを使用してください。電源を入れたままプラグの抜き差しなどをすると、発振したり負の信号を出力したりする場合があります。入射光をフォトディテクタ検出部の中心に合わせて使用し、光が検出部の外まで広がった状態では使用しないことをお勧めしております。このように光が広がった状態で使用した場合、ディテクタ検出部のエッジにおける不均一性によって不要な静電容量や抵抗が発生し、周波数応答を歪ませる可能性があります。
FPD510-FS-NIR、FPD610-FS-NIR、FPD310-FS-NIRには日本国内用の±15 V出力の低ノイズ電源が付属します。
ファイバ結合型のディテクタについては、ファイバ結合型InGaAs増幅ディテクタをご覧ください。
性能仕様
Item # | Wavelength | Bandwidth | Rise Time | Peak Responsivity | Noise Equivalent Power (NEP)a | Active Area | Operating Temperature Range |
---|---|---|---|---|---|---|---|
Fixed Gain | |||||||
PDA015C2 | 800 - 1700 nm | DC - 380 MHz | 1.0 ns | 0.95 A/W @ 1550 nm | 20 pW/Hz1/2 | 0.018 mm2 (Ø150 µm) | 10 to 40 °C |
PDA05CF2b | 800 - 1700 nm | DC - 150 MHz | 2.3 ns | 1.04 A/W @ 1590 nm | 12.6 pW/Hz1/2 | 0.2 mm2 (Ø0.5 mm) | 10 to 50 °C |
PDF10C2 | 800 - 1700 nm | DC - 20 Hz | 19 msc | 1.0 A/W @ 1550 nm | 7.5 x 10-3 pW/Hz1/2 | 0.2 mm2 (Ø0.5 mm) | 10 to 50 °C |
PDA20C2 | 800 - 1700 nm | DC - 5 MHz | 70 ns | 1 A/W @ 1550 nm | 22 pW/Hz1/2 | 3.14 mm2 (Ø2.0 mm) | 10 to 50 °C |
PDA10D2b | 900 - 2600 nm | DC - 25 MHz | 15 ns | 1.35 A/W @ 2300 nm | 10.1 pW/Hz1/2 | 0.8 mm2 (Ø1.0 mm) | 10 to 50 °C |
FPD510-FS-NIR | 950 - 1650 nm | DC - 250 MHz | 2 ns | - | 3.2 pW/Hz1/2 | 0.07 mm2 (Ø0.3 mm) | 10 to 40 °C |
FPD610-FS-NIR | 950 - 1650 nm | DC - 600 MHz | 1 ns | - | 6.6 pW/Hz1/2 | 5 x 10-3 mm2 (Ø0.08 mm) | 10 to 40 °C |
Switchable Gain | |||||||
PDA20CS2b | 800 - 1700 nm | DC - 11 MHzd | N/Ae | 1.04 A/W @ 1590 nm | 1.95 - 61 pW/Hz1/2 | 3.14 mm2 (Ø2.0 mm) | 10 to 40 °C |
PDA10CS2b | 900 - 1700 nm | DC - 13 MHzd | N/Ae | 1.05 A/W @ 1550 nm | 1.91 - 46 pW/Hz1/2 | 0.8 mm2 (Ø1.0 mm) | 10 to 40 °C |
FPD310-FS-NIR | 950 - 1650 nm | 1 - 1500 MHz | 0.5 ns | - | 14.1 pW/Hz1/2 | 5 x 10-3 mm2 (Ø0.08 mm) | 10 to 40 °C |
利得の仕様
利得固定型
Item # | Gain w/ Hi-Z Load | Gain w/ 50 Ω Load | Offset (±) | Output Voltage w/ Hi-Z Load | Output Voltage w/ 50 Ω Load |
---|---|---|---|---|---|
PDA015C2 | 50 kV/A | 25 kV/A | 20 mV | 0 to 10 Va | 0 to 5 Va |
PDA05CF2 | 10 kV/A | 5 kV/A | 20 mV | 0 to 10 V | 0 to 5 V |
PDF10C2b | 1x108 kV/A | - | <75 mV | 0 to 10 V | - |
PDA20C2 | 500 kV/A | 175 kV/A | 25 mV | 0 to 10 V | 0 to 3.5 V |
PDA10D2 | 10 kV/A | 5 kV/A | 75 mV (375 mV Max) | 0 to 10 V | 0 to 5 V |
FPD510-FS-NIR | - | 1.5 x 105 Vpp/Wc 5 x 104 V/Wd | - | - | 0 to 1 V |
FPD610-FS-NIR | - | 2 x 106 Vpp/Wc 5 x 105 V/Wd | - | - | 0 to 1 V |
利得切り替え型
Item # | Gain Step | Gain w/ Hi-Z Loada | Gain w/ 50 Ω Loada | Bandwidth | Noise (RMS) | NEPb | Offset (±) | Output Voltage w/ Hi-Z Load | Output Voltage w/ 50 Ω Load |
---|---|---|---|---|---|---|---|---|---|
PDA20CS2 | 0 | 1.51 kV/A | 0.75 kV/A | 11 MHz | 286 µV | 61 pW/Hz1/2 | 8 mV (12 mV Max) | 0 to 10 V | 0 to 5 V |
10 | 4.75 kV/A | 2.38 kV/A | 1.5 MHz | 201 µV | 5.7 pW/Hz1/2 | ||||
20 | 15 kV/A | 7.5 kV/A | 1 MHz | 236 µV | 2.93 pW/Hz1/2 | ||||
30 | 47.5 kV/A | 23.8 kV/A | 260 kHz | 234 µV | 2.19 pW/Hz1/2 | ||||
40 | 151 kV/A | 75 kV/A | 90 kHz | 240 µV | 1.95 pW/Hz1/2 | ||||
50 | 475 kV/A | 238 kV/A | 28 kHz | 260 µV | 2.24 pW/Hz1/2 | ||||
60 | 1.5 MV/A | 0.75 MV/A | 9 kHz | 300 µV | 2.25 pW/Hz1/2 | ||||
70 | 4.75 MV/A | 2.38 MV/A | 3 kHz | 396 µV | 2.28 pW/Hz1/2 | ||||
PDA10CS2 | 0 | 1.51 kV/A | 0.75 kV/A | 13 MHz | 264 µV | 46 pW/Hz1/2 | 8 mV (12 mV Max) | 0 to 10 V | 0 to 5 V |
10 | 4.75 kV/A | 2.38 kV/A | 1.7 MHz | 190 µV | 3.7 pW/Hz1/2 | ||||
20 | 15 kV/A | 7.5 kV/A | 1.1 MHz | 208 µV | 2.15 pW/Hz1/2 | ||||
30 | 47.5 kV/A | 23.8 kV/A | 300 kHz | 212 µV | 1.95 pW/Hz1/2 | ||||
40 | 151 kV/A | 75 kV/A | 90 kHz | 220 µV | 1.91 pW/Hz1/2 | ||||
50 | 475 kV/A | 238 kV/A | 28 kHz | 235 µV | 2.17 pW/Hz1/2 | ||||
60 | 1.5 MV/A | 0.75 MV/A | 9 kHz | 270 µV | 2.3 pW/Hz1/2 | ||||
70 | 4.75 MV/A | 2.38 MV/A | 3 kHz | 361 µV | 2.24 pW/Hz1/2 | ||||
FPD310-FS-NIR | 0 | - | 2 x 104 Vpp/Wc 2.5 x 103 V/Wd | 1 - 1500 MHz | -e | 14.1 pW/Hz1/2 | N/A (AC Coupling) | - | ~1 V |
20 | - | 2 x 103 Vpp/Wc 2.5 x 102 V/Wd |
Click to Enlarge
PDAおよびPDFシリーズディテクタの筐体の上部には電源コネクタとBNC出力コネクタがあります。
Click to Enlarge
当社のディテクタの筐体の光入力部にはSM05内ネジとSM1外ネジが付いています。各増幅フォトディテクタにはSM1内ネジ付きアダプタSM1T1が付属します。またPDA015C2、PDF10C2、PDA10D2、PDA05CF2、PDA05CF2、PDA10CS2、PDA20CS2には固定リングSM1RRが1個付属します。
InGaAs増幅フォトディテクタの筐体の特長
各ディテクタの詳細な図については下表をご覧ください。
PDAおよびPDFシリーズディテクタ
当社の増幅フォトダイオードシリーズの筐体は薄型で、多くの共通要素で構成されています。 各筐体の光入力部にはSM05内ネジとSM1外ネジが付いており、右の写真のように取り外し可能なSM1内ネジ付きアダプタSM1T1が付いています。SM1T1は厚さ2.8 mmまでの光学素子を保持できます。固定リングSM1RRはすべてのディテクタに付属します。各ディテクタは下の写真のようにØ12 mm~12.7 mm(Ø1/2インチ)ポストを使用した取り付けが可能です。PDF10C2とPDA20C2を除くディテクタは、検出面が筐体の前面と同一平面にある新しい筐体を使用しており、オプトメカニクスシステム内でのアライメントが容易になっています。こちらのディテクタの背面パネルにはフォトダイオードの応答曲線が刻印されています。
レンズチューブの取り付けについて
こちらのディテクタはSM05内ネジとSM1外ネジを使用して様々なオプトメカニクスシステムに組み込みが可能です。SM1ネジにレンズチューブを直接取り付けられるため、レンズチューブシステムにも対応します。アダプタSM1T1を使用して光学フィルタやレンズなどØ25 mm~Ø25.4 mm(Ø1インチ)の光学部品が取り付けられます。
ケージシステムの取り付けについて
ディテクタは右下の写真でご覧いただけるとおり、ケージシステムにも取り付けが可能です。ケージプレートCP33/Mは直接SM1ネジに取り付けられます。この方法ではアダプタを使用する必要がなく、フォトダイオードをできるだけケージプレートの近くに配置できるという利点があります。この利点は光が発散する光学系では特に重要になります。ほかにも付属のSM1T1とアダプタSM1T2を使用してディテクタをケージシステムに組み込む方法があります。この方法ではディテクタの方向の自由度が増します。 またこちらのディテクタはSM1ネジ付きファイバーアダプタもご使用いただけます(下記参照)。
ポストの取り付けについて
ディテクタ筐体の取付用ネジ穴を選択することで、ユニットは、Ø12 mm~12.7 mmポスト使用して水平方向にも垂直方向にも取り付けることができます。そのため、電源ケーブルとBNCケーブルを上から、もしくは左下の写真のように光路の横に接続することが可能です。当社ではミリ規格とインチ規格のディテクタのほか、M4ならびに#8-32ネジの両方が取り付け可能なユニバーサル規格の取付穴付きのディテクタもご用意しております。各ディテクタのタップ穴については下表をご覧ください。
取付け例
Click to Enlarge
PDAフォトディテクタを水平方向に取り付け
Click to Enlarge
PDAフォトディテクタを30 mmケージシステム内のSM1レンズチューブに接続
Click to Enlarge
PDAフォトディテクタをSM1外ネジで30 mmケージシステムに接続
FPDシリーズディテクタ
FPDシリーズディテクタの筐体の底部にはポスト取付け用のM4タップ穴が1つ付いています。電源コネクタとSMA出力コネクタは筐体の側面に付いています。
PDAおよびPDFシリーズディテクタ
BNCメス型 0~10 V出力(フォトディテクタ)
0~10 V出力
オス型(電源ケーブル)
メス型電源コネクタ(フォトディテクタ)
FPDシリーズディテクタ
(※FPDシリーズには国内用の動作確認済み15V電源が付属します)
信号出力端子- SMAメス型 (フォトディテクタ)
オシロスコープやRFスペクトラムアナライザなどのモニタ装置へ50Ωのインピーダンスで接続できます。
メス型 (電源ケーブル)
オス型電源入力端子 (フォトディテクタ)
フォトダイオードのチュートリアル
動作原理
接合型フォトダイオードは、通常の信号ダイオードと似た動作をする部品ですが、接合半導体の空乏層が光を吸収すると、光電流を生成する性質があります。フォトダイオードは、高速なリニアデバイスで、高い量子効率を達成し、様々な用途で利用することが可能です。
入射光の強度に応じた、出力電流レベルと受光感度を正確に把握することが必要とされます。図1は、接合型フォトダイオードのモデル図で、基本的な部品要素が図示されており、フォトダイオードの動作原理が説明されています。
図1:フォトダイオードの概略図
フォトダイオード関連用語
受光感度
フォトダイオードの受光感度は、規定の波長における、生成光電流 (IPD)と入射光パワー(P)の比であると定義できます。
Photoconductiveモード(光導電モード)とPhotovoltaicモード(光起電力モード)
フォトダイオードは、Photoconductiveモード(逆バイアス) またはPhotovoltaicモード(ゼロバイアス)で動作できます。 モードの選択は、使用用途で求められる速度と、許容される暗電流(漏れ電流)の量で決まります。
Photoconductiveモード(光導電モード)
Photoconductiveモードでは、逆バイアスが印加されますが、これが当社のDETシリーズディテクタの基本です。回路で測定できる電流量はフォトダイオードに照射される光の量を反映します。つまり、測定される出力電流は、入射される光パワーに対しリニアに比例します。逆バイアスを印加すると、空乏層を広げて反応領域が広くなるため、接合容量が小さくなり、良好な線形応答が得られます。このような動作条件下では、暗電流が大きくなりがちですが、フォトダイオードの種類を選ぶことで、暗電流を低減することもできます。(注:当社のDETディテクタは逆バイアスで、順方向バイアスでは動作できません。)
Photovoltaicモード(光起電力モード)
Photovoltaicモードでは、フォトダイオードはゼロバイアスで使用されます。デバイスからの電流の流れが制限されると電位が上昇します。このモードでは光起電力効果が引き起こされますが、これが太陽電池の基本です。Photovoltaicモードでは、暗電流は小さくなります。
暗電流
暗電流とは、フォトダイオードにバイアス電圧が付加されている時に流れる漏れ電流です。Photoconductiveモードで使用する場合に暗電流の値は高くなりがちで、温度の影響も受けます。 暗電流は、温度が10°C上昇するごとに約2倍となり、シャント抵抗は6°C の上昇に伴い倍になります。高いバイアスを付加すれば、接合容量は小さくなりますが、暗電流の量は増大してしまいます。
暗電流の量はフォトダイオードの材料や検出部の寸法によっても左右されます。ゲルマニウム製のデバイスでは暗電流は高くなり、それと比較するとシリコン製のデバイスは一般的には低い暗電流となります。下表では、いくつかのフォトダイオードに使用される材料の暗電流の量と共に、速度、感度とコストを比較しています。
Material | Dark Current | Speed | Spectral Range | Cost |
---|---|---|---|---|
Silicon (Si) | Low | High Speed | Visible to NIR | Low |
Black Silicon (B-Si) | Low | Medium Speeda | Visible to NIR | Moderate |
Germanium (Ge) | High | Low Speed | NIR | Low |
Indium Gallium Arsenide (InGaAs) | Low | High Speed | NIR | Moderate |
Indium Arsenide Antimonide (InAsSb) | High | Low Speed | NIR to MIR | High |
Extended Range Indium Gallium Arsenide (InGaAs) | High | High Speed | NIR | High |
Mercury Cadmium Telluride (MCT, HgCdTe) | High | Low Speed | NIR to MIR | High |
接合容量
接合容量(Cj)は、フォトダイオードの帯域幅と応答特性に大きな影響を与えるので、フォトダイオードの重要な特性となります。ダイオードの面積が大きいと、接合容量が大きくなり、電荷容量は大きくなります。逆バイアスの用途では、接合部の空乏層が大きくなるので、接合容量が小さくなり、応答速度が速くなります。
帯域幅と応答性
負荷抵抗とフォトディテクタの接合容量により帯域幅が制限されます。最善の周波数応答を得るには、50 Ωの終端装置を50 Ωの同軸ケーブルと併用します。接合容量(Cj)と負荷抵抗値(RLOAD)により、帯域幅(fBW)と立ち上がり時間応答(tr)の概算値が得られます。
雑音等価電力
雑音等価電力(NEP:Noise Equivalent Power)とは、出力帯域幅1 Hzでの信号対雑音比(SNR)が1になる入力信号のパワーです。NEPによって、ディテクタが低レベルの光を検知する能力を知ることができるので、この数値は便利です。一般には、NEPはディテクタの検出部の面積増加に伴って大きくなり、下記の数式で求めることができます。
この数式において、S/Nは信号対雑音比、Δf はノイズの帯域幅で、入射エネルギ単位はW/cm2となっています。詳細は、当社のホワイトペーパー「NEP – Noise Equivalent Power」をご覧ください。
終端抵抗
オシロスコープでの測定を可能にするためには、生成された光電流を電圧(VOUT)に変換する必要がありますが、負荷抵抗を用いて電圧変換します。
フォトダイオードの種類によっては、負荷抵抗が応答速度に影響を与える場合があります。最大帯域幅を得るには、50 Ωの同軸ケーブルを使用して、ケーブルの反対側の終端部で50 Ωの終端抵抗器の使用を推奨しています。このようにすることで、ケーブルの特性インピーダンスとマッチングできて共鳴が最小化できます。帯域幅が重要ではない特性の場合は、RLOADを増大させることで、所定の光レベルに対して電圧を大きくすることができます。終端部が不整合の場合、同軸ケーブルの長さが応答特性に対して大きな影響を与えます。したがってケーブルはできるだけ短くしておくことが推奨されます。
シャント抵抗
シャント抵抗は、ゼロバイアスフォトダイオード接合の抵抗を表します。理想的なフォトダイオードでは、シャント抵抗は無限大となりますが、実際の数値はフォトダイオードの材料の種類によって、10Ωのレベルから 数千MΩの範囲となる場合があります。例えばInGaAsディテクタのシャント抵抗は、10 MΩのレベルですが、GeディテクタはkΩのレベルです。このことは、フォトダイオードのノイズ電流に大きく影響を与える可能性があります。しかしながらほとんどの用途では、ある程度高い抵抗値であればその影響は小さく、無視できる程度です。
直列抵抗
直列抵抗は半導体材料の抵抗値で、この低い抵抗値は、通常は無視できる程度です。直列抵抗は、フォトダイオードの接触接続部とワイヤ接続部で発生し、ゼロバイアスの条件下でのフォトダイオードのリニアリティの主な決定要因になります。
一般的な動作回路
図2: 逆バイアス回路(DETシリーズディテクタ)
上図の回路はDETシリーズのディテクタをモデル化したものです。ディテクタは、入射光に対して線形の応答を得るために逆バイアス状態になっています。ここで生成された光電流の量は、入射光と波長に依存し、負荷抵抗を出力端子に接続すると、オシロスコープでモニタリングできます。RCフィルタの機能は、出力に雑音を載せてしまう可能性のある供給電力からの高周波雑音のフィルタリングです。
図3: 増幅ディテクタ回路
高利得用途でアンプとともにフォトディテクタを使用できます。動作時には、PhotovoltaicモードまたはPhotoconductiveモードのいずれも選択可能です。このアクティブ回路はいくつかの利点があります。
- Photovoltaicモード:オペアンプで、点Aと点Bの電位が同じに維持されているので、フォトダイオードでは回路全体では0 Vに保たれています。このことで暗電流は発生しなくなります。
- Photoconductiveモード: フォトダイオードは逆バイアス状態であるので、接合容量を低下させ、帯域幅の状態を改善します。ディテクタの利得は、フィードバック素子(Rf)に依存します。ディテクタの帯域幅は、下記の数式で計算することができます。
GBPが利得帯域幅積で、CDは接合容量と増幅器の静電容量の和です。
チョッパ入力周波数の影響
光導電信号は時定数の応答限界までは一定となりますが、PbS、 PbSe、HgCdTe (MCT)、InAsSbなどのディテクタにおいては、1/fゆらぎ(チョッパ入力周波数が大きいほどゆらぎは小さくなる)を持つため、低い周波数の入力の場合は影響が大きくなります。
低いチョッパ入力周波数の場合は、ディテクタの受光感度は小さくなります。周波数応答や検出性能は下記の条件の場合において最大となります。
下表は当社のPDA、PDFならびにDETディテクタの旧製品と現製品の一覧です。
Previous Generation Cross Reference of PDA and DET Detectors | |||||
---|---|---|---|---|---|
Wavelength | Material | Biased Detector | Amplified Detector | ||
Current Generation | Previous Generation | Current Generation | Previous Generation | ||
200 - 1100 nm | Si | DET10A2 | DET10A(/M) | PDA10A2 | PDA10A(-EC) |
320 - 1000 nm | Si | - | - | PDA8A2 | PDA8A |
400 - 1000 nm | Si | - | - | PDA015A2 | PDA015A(/M) |
320 - 1100 nm | Si | DET100A2 | DET100A(/M)a | PDA100A2 | PDA100A(-EC)b |
Si | - | - | PDF10A2 | PDF10A(/M) | |
350 - 1100 nm | Si | DET36A2 | DET36A(/M) | PDA36A2 | PDA36A(-EC) |
500 - 1700 nm | InGaAs | DET10N2 | DET10N(/M) | - | - |
800 - 1700 nm | InGaAs | DET20C2 | DET20C(/M) | PDA20CS2 | PDA20CS(-EC) |
- | - | PDA05CF2 | PDA10CF(-EC) | ||
- | - | PDA015C2 | PDA015C(/M) | ||
- | - | PDF10C2 | PDF10C(/M) | ||
- | - | PDA20C2 | PDA20C(/M) | ||
800 - 1800 nm | Ge | DET30B2 | DET30B(/M) | PDA30B2 | PDA30B(-EC) |
DET50B2 | DET50B(/M) | PDA50B2 | PDA50B(-EC) | ||
900 - 1700 nm | InGaAs | DET10C2 | DET10C(/M) | PDA10CS2 | PDA10CS(-EC) |
900 - 2600 nm | InGaAs | DET05D2 | DET05D(/M)c | PDA10D2 | PDA10D(-EC)c |
DET10D2 | DET10D(/M)c | - | - |
Posted Comments: | |
Stijn Mast
 (posted 2024-02-02 16:15:01.733) Dear,
What is the maximum optical irradiance (e.g. in W/cm^2) that this detector can safely handle without damage?
Thanks,
Stijn Mast ksosnowski
 (posted 2024-02-02 12:55:33.0) Hello Stijn, thanks for reaching out to Thorlabs. The max power level for the PDA20CS2 detector will depend on the wavelength used as well as the gain. Any inputs that lead to the maximum output voltage should be avoided as this saturates the amplifier and can damage the detector. On the PDA series, the amplifier will saturate before the photodiode itself, and this is going to occur well before surface damage is induced unless a very tiny beam is used. I recommend trying to fill ~80% of the sensor area, which helps eliminate any potential high power density on the sensor, and also prevents potential overfilling which causes loss and bandwidth issues. With the lowest gain setting of 1.51 kV/A and peak response around 1 A/W, you would hit saturate the output around 6mW, or with less power at higher gain settings. I have reached out directly to discuss your application further. Dodd Gray
 (posted 2023-09-08 10:38:39.38) Are some/all of your amplified photodetectors compatible with a +/-15V power supply? I assume these are the rail voltages for amplifier ICs in the TIA circuits, but I could not find max DC power supply voltage ratings in the datasheets. If possible I would like to power several amplified InGaAs detectors and other control circuits with the same +/-15V linear power supply rails. Thanks! ksosnowski
 (posted 2023-09-13 11:11:25.0) Hello Dodd, thanks for reaching out to Thorlabs. We do not typically recommend using a +/-15V supply as this causes extra heating in the amplifier and in cases like with 50 Ohm termination this can damage the amplifier with the amount of current passed. We further recommend to operate with the designed 12V supply voltage as modifications to the detector system could complicate future operation since our standard detector systems are typically rated for 50 Ohm loading and a supply voltage modification may not be apparent to other users of the system. I have reached out directly to discuss your application in further detail. Gearoid Whelan
 (posted 2023-08-16 13:41:58.203) Hi,
I want to enquire if the PDA10D2 can be calibrated? If so can you do the calibration and provide a calibration cert?
Best regards,
Gearoid ksosnowski
 (posted 2023-08-16 11:36:17.0) Hello Gearoid, thanks for reaching out to Thorlabs. Unfortunately we do not offer calibrations on the PDAx series of amplified photodetectors. For applications requiring <100kHz bandwidth our Calibrated Photodiode Power Sensors like S122C may be useful. We do offer one bare Calibrated InGaAs Photodiode as our FGA21-CAL, however we are only able to perform the calibration at zero-bias point, so while the exact responsivity should not change with bias we cannot particularly guarantee the calibration data under different biases as the bias does effect the noise floor and saturation conditions. I have reached out directly to discuss your application further. Alex Pa
 (posted 2023-02-05 00:55:24.973) Hello,
The signal I want to measure with detectors is modulated CW laser at 1550 nm (fiber coupled). The laser is modulated into ~8ns pulses while pulse peak power is in the range of 1mW to 1uW. Time between pulses can be anything between 10 ns and few ms,
so I am looking for DC coupled detectors only. I am choosing from PDA015C and FPD610-FC-NIR. According to my understanding the first one will be saturated at 0.2mW and the second one will be saturated at 2uW. In general I can attenuate my optical signal, but I need to get the maximum dynamic range considering that my scope can measure in the range of 5V to 5mV. It seems like the first option (PDA015C) is preferable since it can produce output of 5V. Does it make sense? Are there other options?
Thank you ksosnowski
 (posted 2023-02-16 10:11:52.0) Hello Alex, thanks for reaching out to Thorlabs. The dynamic range for a detector has an upper limit due to saturation and lower limit due to the noise floor of the device. Spectral responsivity, gain, NEP, and the actual measurement setup can effect both of these limits. For questions like this we recommend emailing techsupport@thorlabs.com directly. I have reached out to discuss your application further. user
 (posted 2020-10-19 18:32:01.433) Hello,
In manual, we see both NEP and Noise(RMS) for each gain setting. If we want to know the total noise, we simply calculate from NEP, bandwidth and gain. The calculated one is different from Noise(rms).
So what is Noise(rms) in this manual? and how to calculate the total noise of the measured signal?
Thank you,
Steve asundararaj
 (posted 2020-10-30 09:09:23.0) Thank you for contacting Thorlabs. The NEP and the RMS noises were characterized using different equipment. The NEP was measured using the spectrum analyzer which gives the curve vs bandwidth. The RMS noises however were measured using a 1.5GHz oscilloscope. As there is no bandwidth cutoff, all of the signals/noises up to the scope’s bandwidth would be measured/recorded. Also the scope’s own noise baseline would be there too. Thus, it is normal that the RMS noise is higher than the calculated number. The reason we provides an RMS is that we wanted to give the user a more intuitive number of what the noise could be when measuring with a scope. Nicolas Védrenne
 (posted 2020-09-05 22:41:01.153) Hello. I would be interested to know the mechanical position of the photodetector plane with respect to the mechanical housing (for instance). I would like to know if the focus position of the camera lens MVL100M23 + SM05A1 adapter would fit with a PDA20CS2 without any mechanical adjustment to ensure a correct focusing of the light coming from infinity or if I must add an adaptation ring to secure the focusing. asundararaj
 (posted 2020-10-26 10:07:24.0) Thank you for contacting Thorlabs. The photodetector surface is flush with the front of the housing as indicated in the AutoCAD drawing. The MVL100M23 is a standard C-mount machine vision lens which has a flange back distance to the sensor area of 17.526 mm. When used with standard C-mount cameras, this will require no mechanical adjustment. With the PDA20CS2, this will require some adjustment. For most applications, using a simple plano-convex lens might be sufficient to collect light from infinity to be detected. Hoang Nguyen
 (posted 2019-04-19 14:39:07.52) What is the saturation power for PDA20CS2, at each gain level? What is the maximum power the PDA can tolerate? Thanks. YLohia
 (posted 2019-04-19 04:45:38.0) The saturation power can be calculated from the V_Out equation in the PDA manuals by setting V_Out equal to the maximum voltage output for the detector (for a High-Z impedance), and setting the scale factor equal to 1 (the scale factor for High-Z impedance). Please note that the saturation power will be independent of the load impedance: V_Max = Responsivity (λ) ∗ Transimpedance Gain ∗ [Max Input Power] (W) The optical saturation power is independent of load impedance, since V_max and the scale factor from the full V_Out equation both change in the same proportion as the load changes.
A conservative value for the damage threshold would be ~100 W/cm^2 average power density (but it can often be closer to 100 kW/cm^2) or about 100 mW total average power. We don't typically spec a damage threshold for photodiodes for two main reasons: the output voltage will saturate several orders of magnitude before damaging the surface, and only CW (average power) damage is a concern for most situations. For pulsed sources, the active area is less prone to pulsed damage mechanisms (e.g. dielectric breakdown/avalanche ionization). The primary damage mechanism is thermal burning at the PN junction. Both CW and pulsed damage will strongly depend on usage conditions so you should use these numbers as guideline only and not as an official spec. Also note that the max current output is specified to be 100mA. So depending on the gain setting and wavelength, the current should always be less than 100mA. This information applies to all PDAs on this page (please double check the max current rating on the manual for future releases as this spec may change). kallmyer
 (posted 2019-01-24 15:05:13.633) I am planning to use the PDF10C and PDA-C-72 in a portable device and need it to run on battery power. My current plan is to use two 12V batteries in series to achieve the +12, 0, and -12 V. I also plan to add a simple RC circuit to achieve a soft start and a slow blow fuse for overcurrent protection. Do you have any recommendations on running these photodetectors with battery power? nreusch
 (posted 2019-04-16 03:53:18.0) This is a response from Nicola at Thorlabs. Thank you for your inquiry! While the PDF10C is not designed to be operated by battery, we still assume that the setup you suggested should work. user
 (posted 2019-01-10 09:25:02.723) What is the maximum optical input power of PDA10D2 for linear operation? YLohia
 (posted 2019-01-11 04:44:01.0) The saturation power can be calculated from the V_Out equation in the PDA manuals by setting V_Out equal to the maximum voltage output for the detector (for a High-Z impedance), and setting the scale factor equal to 1 (the scale factor for High-Z impedance). Please note that the saturation power will be independent of the load impedance:
V_Max = Responsivity (λ) ∗ Transimpedance Gain ∗ [Max Input Power] (W)
The optical saturation power is independent of load impedance, since V_max and the scale factor from the full V_Out equation both change in the same proportion as the load changes. user
 (posted 2018-07-01 21:53:00.79) I hope the maximum optical input power that can be fed to the photodetector, e.g. PDA015C/M is the same as the damage threshold YLohia
 (posted 2018-07-03 10:05:05.0) Please see the comment on the saturation/damage threshold spec for the PDA015C/M below. user
 (posted 2018-06-15 07:43:08.627) What is the damage threshold of PDA015C/M photodetectors as it's saturation power is 350 microwatt YLohia
 (posted 2018-06-22 09:48:51.0) A conservative value would be ~100 W/cm^2 average power density (but it can often be closer to 100 kW/cm^2) or about 100 mW total average power. We don't typically spec a damage threshold for photodiodes for two main reasons: the output voltage will saturate several orders of magnitude before damaging the surface, and only CW (average power) damage is a concern for most situations. For pulsed sources, the active area is less prone to pulsed damage mechanisms (e.g. dielectric breakdown/avalanche ionization). The primary damage mechanism is thermal burning at the PN junction. Both CW and pulsed damage will strongly depend on usage conditions so you should use these numbers as guideline only and not as an official spec. michael.vandegraaaff
 (posted 2018-03-13 11:55:30.23) We have some older PDA10CS detectors in our lab. On the detector it is labeled 700-1800 nm. However the PDA10CS part currently available for purchase is only spec'd from 900-1700 nm.
We have been using these for measuring 767nm light so this is relevant for us; do you have data down to 700nm or data for the older product. Can you explain the reason for the discrepancy?-Thank you YLohia
 (posted 2018-03-16 09:27:04.0) Hello Michael, thank you for contacting Thorlabs. We tightened the specs of our PDA and DET detector lines in June 2015. The actual photodiode, as well as the circuitry of the detector, is still the same. Having the lower range as 900nm in the latest revision of the spec sheet does not necessarily mean that the unit will not be able to detect 767nm light. You may just have a low output signal from the unit, depending on the input optical power at this wavelength. I have reached out to you directly to discuss this further. sergio.vilches
 (posted 2017-08-08 15:39:48.433) NEP value of PDA10D is shown as 0.35 pW/sqrtHz in one of the tables.
Probably it is 35 pW/sqrtHz ? tfrisch
 (posted 2017-08-16 04:48:23.0) Hello, thank you for bringing this to our attention. The NEP is 3.5x10^(-11)W/sqrt(Hz) as listed in the manual. This corresponds to 35pW/sqrt(Hz). I will reach out to you directly to clarify this as well. user
 (posted 2017-04-04 05:50:02.717) What's the damage threshold for PDA10CS? Is it related to maximum current in the electric unit or determined by the maximum optical power density on the active area? tfrisch
 (posted 2017-04-26 01:49:55.0) Hello, thank you for contacting Thorlabs. We do not list a damage threshold for these detectors as they will saturate before they are damaged. They are only intended for use in the region with linear response. Whether it is the gain electronics or photodiode which saturates first will depend on the gain setting. Please reach out to TechSupport@Thorlabs.com to discuss further with one of our Applications Engineers. melanie
 (posted 2017-01-26 07:37:36.047) Please can you tell me the max operating temperature of this photodiode, and also the 10CS,
thank you tcampbell
 (posted 2017-01-26 09:06:13.0) Response from Tim at Thorlabs: thank you for your question. The maximum operating temperature of the PDA20CS(-EC) is 70 °C, and the maximum operating temperature of the PDA10CS(-EC) is 40 °C. These values are given in chapter 6 of the manuals. We will add this information to the web to make it easier to find. grafen
 (posted 2016-05-04 14:01:19.97) Hello,
we use this photodiode for two-photon absorption. Can you tell me of which material the front window is? besembeson
 (posted 2016-05-05 10:21:11.0) Response from Bweh at Thorlabs USA: The window material for the PDA10D is borosilicate. bernhard.reitinger
 (posted 2015-06-02 17:40:49.587) Dear ladies and gentleman.
I think the PDF10CF is really a great product and the price compared to the biased version is what it makes even more great.
Unfortunately in our application (interferometry) we would need an AC-coupled version.
Would it be possible to add such a version in your portfolio?
Best Regards
Bernhard Reitinger jlow
 (posted 2015-06-05 09:39:33.0) Response from Jeremy at Thorlabs: Thank you very much for the feedback. We will look into offering the AC-coupled version or offer it as a special. We will contact you directly about this. Karthekab
 (posted 2015-04-10 11:21:38.703) The Adapter doesn't show the green light and I guess the current is not passing through it.
Can you please help me with this issue jlow
 (posted 2015-04-14 09:57:47.0) Response from Jeremy at Thorlabs: Please make sure the voltage selection switch is set to the correct setting. It could also be that the fuse is blown. I will contact you directly to troubleshoot more about this. user
 (posted 2015-02-02 16:36:14.25) Are the bandwidths quoted single-sided or double-sided ?
Thank you jlow
 (posted 2015-02-03 03:58:43.0) Response from Jeremy at Thorlabs: These are measured from DC so it should be single-sided. Paul.Wallace
 (posted 2014-05-09 13:04:28.943) We are using multiple numbers of this product (40) in an AWG. A power supply to power multiple units would be a great help. Controling mains leads to 40 power supplys is horid jlow
 (posted 2014-06-11 10:32:30.0) Response from Jeremy at Thorlabs: Thank you for contacting Thorlabs. We will look into the possibility of providing this custom power supply for you and contact you directly. marcelogodin
 (posted 2012-09-06 09:45:57.0) Hello I recently bought a PDA36A with the intention of measuring current due to light radioluminescence. I connected a photodiode PDA36A to an electrometer and I measured a noise about 150 nA. Is this normal?
PDA36A noise is higher than DET36A? jlow
 (posted 2012-08-09 10:28:00.0) Response from Jeremy at Thorlabs: Using the SolidWorks, the typical FOV for the different PDA is listed below.
PDA100A: 53.13°,
PDA36A: 70.19°,
PDA10A: 122.92°,
PDF10A: 127.81°,
PDF8A: 150.64°. ben.aernouts
 (posted 2012-07-31 17:34:45.0) Dear,
Is it possible to provide me with the Field of View (FOV) of following Thorlabs Amplified Si detectors:
PDA10A
PDA8A
PDF10A
PDA36A
PDA100A
Many thanks and best regards,
Ben Aernouts
Department Biosystems, Division MeBioS
KULeuven tcohen
 (posted 2012-05-15 09:49:00.0) Response from Tim at Thorlabs: Thank you for your feedback! Our superseded products can be found by utilizing the search bar where the original supporting documentation is left intact. I am not sure that the part number you specified was our original part number. I will send you an overview of the old web presentation in order to determine the part number and provide supporting documentation for the correct product. ryanbrock2011
 (posted 2012-05-11 18:54:17.0) Is the "New vs. Old" page mentioned in the older comments no longer on this site? I am looking for information on an old PDA-50 Si Amplified Photodetector bdada
 (posted 2012-01-25 15:15:00.0) Response from Buki at Thorlabs:
We specify at least +/- 12V, 125mA. However this is very conservative, especially if the PDA is driving a high impedance load. Most of the current usage is for driving the output. A 50Ohm load with the maximum output voltage (5V) will require a current of 100mA (5V/50Ohms). The amplifier itself uses approximately +/- 25mA from +/-12V supplies. The +12V supply needs to be able to supply an additional 100mA if it is driving a 50Ohm load.
Please contact TechSupport@thorlabs.com if you have any questions. andrew.beeby
 (posted 2012-01-25 10:37:37.0) Could you advise what current the device draws at +/- 12V if we want to use our own power supply? Thorlabs
 (posted 2010-11-08 10:01:42.0) Response from Javier at Thorlabs to Nathan: Thank you for your feedback. The PDA10CF and PDA10CS detectors have not been superseded. We are currently working with our web team to reactivate the shopping cart option so that you can order them through the web. You can also contact our sales department st sales@thorlabs.com or by phone at (973) 579 7227 to place an order. nathan.flowers-jacobs
 (posted 2010-11-08 08:50:43.0) Have you discontinued the PDA10CF & PDA10CS detectors? They are still included in the overview and specs tabs, but I cant find more detailed information or an option for purchasing? Or is there a replacement part (particularly for the variable gain version, but also for the fixed gain/high bandwidth version)? Thanks. Thorlabs
 (posted 2010-11-04 18:21:38.0) Response from Javier at Thorlabs to imag: all of our photodiodes have a protective resin or coating. In order to remove dust, we would suggest gently blowing pressurized air onto the surface of the detector, from a ~6" distance. If further cleaning is needed, you can use ethyl alcohol an wipe off the dirt carefully. It is not recommended to use organic solvents, as they can degrade the quality of any resin coating or filters. imag
 (posted 2010-11-03 17:42:40.0) I have a bunch of Thorlabs Si-photodiodes, biased and amplified. What is the procedure for the sensing area cleaning in the case if gets dirty or dusty ? Unlike conventional photodiodes, these detectors are not in some protective case with transparent window. Do they really have any protective layer on the Si ? jens
 (posted 2009-09-06 17:47:28.0) A reply from Jens at Thorlabs: as for the maximum power we do not recommend to use more than 100mW over the detector area. You will find higher values in some publications, depending on wavelenght and exposure time and this value is more on the safe side. As to the inhomogenity the laser point located at different spots on the detector surface does indeed not produce the same conversion because of boundary conditions. These boundary conditions vary from diode to diode. To get a true estimate we can map out the area of the photo diode. I will contact you with additional data regarding the measurement. If possible the 2/3 rule (i.e. filling 2/3 of the detector aperture) should be followed. flo6137
 (posted 2009-08-31 12:38:28.0) Hi, I am currently using a PDA100A but it seems that the sensitivity to the impinging laser light is not the same on all area of the photon detector. We have almost 10% of difference between different area.
It might be possible that our PDA100A had been damaged by being exposed to a high power laser beam.
But before buying a new one, could you please provide me some information about the accuracy of this photon detector (I mean the difference of sensitivity between the different cells of the detector) and about the maximum power that we can use without damaging the detector. klee
 (posted 2009-08-03 17:36:13.0) A response from Ken at Thorlabs to asd: All the US and EC versions had different power supplies originally and the EC (220-240VAC) power supplies were more expensive. We did not change to the current new switchable power supply until about a year ago. We will be updating the prices shortly. asd
 (posted 2009-08-02 18:11:34.0) How come the the PDA3A-EC is so much more expensive than the PDA36A?
The other detectors dont show this skew in price and the PSUs are identical.
Looks like a consumer annoying cock up. klee
 (posted 2009-07-09 10:00:13.0) A response from Ken at Thorlabs to perry.gray: We do carry SM1 to C-mount adapters. SM1A10 has external SM1 Threads and internal C-Mount Threads while SM1A9 has internal SM1 Threads and external C-Mount Threads. perry.gray
 (posted 2009-07-08 21:35:37.0) You guys need a C-mount adapter for your PDA series diodes so I can mount my existing c-mount tv camera lenses on my PDA diode housings user
 (posted 2009-06-09 13:16:54.0) A response from Adam at Thorlabs to Letizia: Hi, We do not have data on the thermal drifts for these units. If you provide me with the temperature ranges you may be using the PDA25k at , I can check with our electronics engineers and see if we can provide more inforamtion. My email address is apalmentieri@thorlabs.com. user
 (posted 2009-06-09 11:42:19.0) Response from Adam at Thorlabs, Inc. Hi, I have spoken with our electronics engineers and there should be no need to distance the power supply from the photodiode. I am also checking with our engineers to see if we can provide any data about the shot noise. As soon as I have more information, I will send you an email. If you have further questions or concerns, feel free to contact me, apalmentieri@thorlabs.com. slamkadmi
 (posted 2009-06-09 11:28:37.0) Hello,
I need to know if there is any requirement concerning the distance from the power supply to the photodiode. I have just seen a comment saying that "the power supply needs to be located about 5 meters away". Could you tell me more about that? I also need some data concerning the shot noise. Can the phase of the signal be deteriorated by the photodiode? In fact, we need to extract the phase from the output signal and we need a very high precision on the signal phase. If you do have any data, please let me know.
Thanks in advance.
Best regards letizia.demaria
 (posted 2009-04-15 03:47:47.0) could you please specify the temperature coefficient (thermal drift) for PDA25k?
thank you
ldm Laurie
 (posted 2009-01-22 11:00:47.0) Response from Laurie at Thorlabs to lee: Thank you for your interest in Thorlabs Products. A member of our technical support staff will be contacting you directly. We need a bit of clarification concerning your inquiry prior to discussing possible solutions. lee
 (posted 2009-01-20 04:13:57.0) I plan to use PDA10A in an equipment, but the power supply needs to be located about 5 meters away. Ill be using a linear +/-12V power supply on DIN rail. I prefer to make the power supply cable in house, and so Id appreciate it if (1) Thorlabs sells the cable-side power connector (not the whole cable like PDA-C-72), or (2) gives relevant information such as connector manufacturer and part number. Laurie
 (posted 2008-12-10 13:37:22.0) Response from Laurie at Thorlabs to jwerly: Thank you for your feedback concerning our PDA photodetectors. The transimpedance photocurrent amplifier assembly is built directly into the circuitry of the PDA detector, and thus, it is not possible to control the amplification externally or through some other method. Detectors like the PDA36A have switchable gain, but again, there is no way to adjust the amplification. jwerly
 (posted 2008-12-09 09:11:15.0) Hello, I have a question about your PDA series. I would know how can we control the amplification. I mean, is it an automiticaly, a manualy or even a manualy by an electronic interface ?
Regards, Julien Werly. sal
 (posted 2008-03-06 09:55:47.0) Response from Sal at Thorlabs to jschumacher, ghegenbart, and acable:
Numerous changes have been made to this page to address the postings below. The PDA8GS is a high-speed, fiber coupled detector that is now included with the other detectors in that family. The FPD310 high speed PIN photodiode module is accessible directly from its own window in the Biased and Amplified Detector Visual Navigation pane. Regarding this page, the pin description for the PDA Power Connector is in a diagram immediately next to the price and description of this component. All detectors are now grouped by material type (InGaAs and Ge are separated). The New vs. Old tab includes explicit references between current and superseded devices and the superseded devices are hot links that will lead to their documentation. This arrangement insures easy access to the old part information. The Overview tab has been completely reorganized to present the modules grouped both by high level feature (Switchable Gain, Wideband, etc.), application, and detector type (Si, InGaAs, etc.). The Specs tab also has been grouped by detector type. Gain figures are easy to read and units are expressed in both V/A and ohms since both units are generally used. Finally, under the Graphs tab a complete set of spectral responsivity data is included for each model number. We continually strive to assist our customers in finding the product that is best suited to their application. Thanks for your continued business. technicalmarketing
 (posted 2007-12-27 16:44:57.0) In response to ghegenbarts comments, we have split the InGaAs and Ge subgroups as was done with the DETs page. We have also updated the product descriptions to be more uniform. Please note that acables comments are still being addressed by the technical marketing group. We thank you for your input, and hope that you find these changes to be helpful. acable
 (posted 2007-12-12 05:55:15.0) Your "Specs" tab would be much easier to read if it was separated by detector type, when using the chart i am forced to piece together what Si detectors are available, it is great to have a large selection of products but as you expand the selection please realize that more thought should go into how you organize the presentation. I would also suggest a selection table right on the Overview tab, all the text is great for the first time visitor, added the table would just complete the overview picture faster for your more experienced customers.
Another point that is confusing for me as a repeat customer is the non-uniformity of the product descriptions in the price boxes. Since i know the detector family fairly well and just need to pick out the right model it would be great to have all the relevant information right in your price table, there seems to be room. For me the order of importance is:
What it Is: Handled with your Price Box Header
Material: (which you handle well by separating the boxes by material)
Bandwdith: (highest if switchable gain but provide foot note)
Gain: (number if fixed and range if variable)
Wavelength Range: (given by material in most cases)
Ex: PDA10A, 150MHz BW, 5KOhm Gain, 200-1100nm Detector
Also, my sense is that the transimpedence gain in units of Ohms is the standard way to specifiy an amplified detector, why the V/A, silly little thing but it caused me to have to pause. acable
 (posted 2007-12-12 05:27:23.0) I came to this page specifically to cross reference an old PDA part number to a new one and was disapointed to find that this information was not provided on the "New vs Old Design" tab. Can you add a simple chart and then ensure the internal search feature can "see" the old part numbers. Does your search feature even have the ability to send a visitor to a specific tab. ghegenbart
 (posted 2007-11-26 08:14:26.0) I suggest not to combine InGaAs and Ge in one product group but have them listed separately like it is done for the DETs. jschumacher
 (posted 2007-10-18 12:58:43.0) please add pin description for PDA power connector |
下表は、当社のフォトダイオードタイプのディテクタ、フォトコンダクティブ型ディテクタ、焦電ディテクタの一覧です。同一の列に記載されている型番の検出素子は同じです。
Item #a | Housing Featuresb | Wavelength Range | Bandwidth Range | Rise Time | Gain | NEP | Typical Performance Graphs | Active Areac | Operating Temperature Range | Power Supply Included | |
---|---|---|---|---|---|---|---|---|---|---|---|
Hi-Z Load | 50 Ω Load | ||||||||||
PDA015C2 | 800 - 1700 nm | DC - 380 MHz | 1.0 ns | 50 kV/A | 25 kV/A | 20 pW/Hz1/2 | 0.018 mm2 (Ø150 µm) | 10 to 40 °C | Yes | ||
PDA05CF2 | 800 - 1700 nm | DC - 150 MHz | 2.3 ns | 10 kV/A | 5 kV/A | 12.6 pW/Hz1/2 | 0.2 mm2 (Ø0.5 mm)d | 10 to 50 °C | Yes | ||
PDF10C2 | 800 - 1700 nm | DC - 20 Hz | 19 mse | - | 0.2 mm2 (Ø0.5 mm) | 10 to 50 °C | Yes | ||||
PDA20C2 | 800 - 1700 nm | 70 ns | 500 kV/A | 175 kV/A | 22 pW/Hz1/2 | 3.14 mm2 (Ø2.0 mm) | 10 to 50 °C | Yes | |||
PDA10D2 | 900 - 2600 nm | DC - 25 MHz | 15 ns | 10 kV/A | 5 kV/A | 10.1 pW/Hz1/2 | 0.8 mm2 (Ø1.0 mm)d | 10 to 50 °C | Yes | ||
FPD510-FS-NIR | 950 - 1650 nm | DC - 250 MHz | 2 ns | - | 1.5 x 105 Vpp/Wf 5 x 104 Vpp/Wg | 3.2 pW/Hz1/2 | 0.07 mm2 (Ø0.3 mm) | 10 to 40 °C | Yes | ||
FPD610-FS-NIR | 950 - 1650 nm | DC - 600 MHz | 1 ns | - | 2 x 106 Vpp/Wf 5 x 105 Vpp/Wg | 6.6 pW/Hz1/2 | 5 x 10-3 mm2 (Ø0.08 mm) | 10 to 40 °C | Yes |
Item #a | Housing Featuresb | Wavelength Range | Bandwidth Range | Gainc | NEP | Typical Performance Graphs | ActiveAread | Operating Temperature Range | Power Supply Included | |
---|---|---|---|---|---|---|---|---|---|---|
Hi-Z Load | 50 Ω Load | |||||||||
PDA20CS2 | 800 - 1700 nm | DC - 11 MHz | 1.51 kV/A - 4.75 MV/A | 0.75 kVA - 2.38 MV/A | 1.95 - 61 pW/Hz1/2 | 3.14 mm2 (Ø2.0 mm)e | 10 to 40 °C | Yes | ||
PDA10CS2 | 900 - 1700 nm | DC - 13 MHz | 1.51 kV/A - 4.75 MV/A | 0.75 kVA - 2.38 MV/A | 1.91 - 46 pW/Hz1/2 | 0.8 mm2 (Ø1.0 mm)e | 10 to 40 °C | Yes | ||
FPD310-FS-NIR | 950 - 1650 nm | 1 MHz - 1.5 GHz | - | 2 x 103 - 2 x 104 Vpp/Wf | 14.1 pW/Hz1/2 | 5 x 10-3 mm2 (Ø0.08 mm) | 10 to 40 °C | Yes |
- PDAシリーズ、PDFシリーズの増幅フォトディテクタ(上記掲載)の交換用電源
- ±12 VDC出力
- 短絡回路を保護しオーバーロードを防ぐ電流リミット機能
- LED表示付きのOn/Offスイッチ
- AC入力電圧はスイッチ切り替え可能(100/120/230 VAC)
- 長さ2 mのケーブルはLUMBERG製オス型コネクタRSMV3付き
この±12 VDC安定化リニア電源LDS12Bは、上記掲載のPDAおよびPDFシリーズの増幅フォトディテクタに付属する電源の交換用製品です。ケーブルに付いているコネクタは3ピンで、グランド用、+12 V用、-12 V用となっています(右図参照)。日本国内仕様の電源ケーブルが付属します。また、この電源は当社のPDBシリーズの差分ディテクタ(バランスディテクタ)、PMMシリーズの光電子増倍管モジュール、APDシリーズのアバランシェフォトディテクタ、フェムト秒レーザ用オートコリレータFSACにも対応しています。
- FC/PC(ナローキーまたはワイドキー)、FC/APC(ナローキーまたはワイドキー)、SMA、ST®*/PC、SC/PC、 LC/PC、またはØ2.5 mmフェルールレセプタクル付き
- SM1レンズチューブとの組み合わせで遮光可能
- 当社の多くのフォトダイオードパワーセンサに対応
注: APCアダプタの前面には 2つの窪みがあり、スパナレンチSPW909またはSPW801を用いて締め付け可能です。このアダプタをSM1レンズチューブと遮光用途でお使いいただけるように、窪みはディスクを貫通していません。
FC/PCおよびFC/APCアダプタには、ナローキー(2.0 mm)とワイドキー(2.2 mm)の2種類のコネクタをご用意しております。ナローキーとワイドキーの詳細については、光ファイバとは のページをご覧ください。
フェルール用アダプタS120-25は、ロッキングコネクタ機構無しの設計になっています。Ø2.5 mmフェルール付きのファイバーパッチケーブルに対応し、フォトディテクタやパワーセンサを用いた測定を迅速に行うことができます。
*ST®はLucent Technologies社の登録商標です。
- FC/PC(ナローキーまたはワイドキー)、FC/APC(ナローキーまたはワイドキー)、SMA、ST®*/PC、SC/PC、 LC/PCレセプタクル付き
- FC/PC(ワイドキー)とSMAレセプタクルは真空対応の製品もご用意
- SM1レンズチューブとの組み合わせで遮光可能
- 当社の多くの30 mmケージプレートならびにフォトディテクタに対応
注: 各ディスクには4つの窪み(前面と背面に2つずつ)があり、どちらの面からもスパナレンチSPW909またはSPW801で締め付け可能です。アダプタをSM1レンズチューブと遮光用途で使用できるよう、窪みはディスクを貫通していません。アダプタの位置確定後は、固定リングSM1RRで固定してください。
FC/PCおよびFC/APCアダプタには、ナローキー(2.0 mm)とワイドキー(2.2 mm)の2種類のコネクタをご用意しております。ナローキーとワイドキーの詳細については、光ファイバとはのページをご覧ください。
*ST®はLucent Technologies社の登録商標です。