赤外(IR)域用溶融石英プレート型ビームスプリッター、コーティング:0.9~2.6 µm


  • Excellent for FTIR Spectroscopy
  • Beamsplitter Coating for the 0.9 - 2.6 µm Range at 45° Incidence
  • Ø1/2", Ø1", 25 mm x 36 mm, and Ø2" Sizes

BSW24

Ø2"

BSW23

Ø1"

BSW23R

25 mm x 36 mm

BSW22

Ø1/2"

Engraved Arrow
Points in the Direction
of Light Transmission

Related Items


Please Wait
Plate Beamsplitter Selection Guide
SubstrateBeamsplitter Coating
UV Fused Silica250 - 450 nm
350 - 1100 nm
400 - 700 nm
532 nm and 1064 nm
600 - 1700 nm
700 - 1100 nm
1.2 - 1.6 µm
IR Fused Silica0.9 - 2.6 µm
Calcium Fluoride1 - 6 μm
2 - 8 μm
Zinc Selenide1 - 12 μm
7 - 14 μm

特長

  • 前面にビームスプリッターコーティング:0.9~2.6 µm
  • 分岐比(AOI=45o) 50:50に最適化
  • 裏面に反射防止(AR)コーティング: 0.9~2.6 µm
  • Ø12.7 mm(Ø1/2インチ)、Ø25.4 mm(Ø1インチ)、25 mm x 36 mm、およびØ50.8 mm(Ø2インチ)バージョンをご用意
  • 基板:赤外(IR)域用溶融石英(透過率曲線)
  • 円形ビームスプリッタでは裏面のウェッジ(30 arcmin)によりゴーストを抑制

当社の50:50赤外域用溶融石英製広帯域ビームスプリッタは、Ø12.7 mm(Ø1/2インチ)、Ø25.4mm(Ø1インチ)、25 mm x 36 mm、Ø50.8 mm(Ø2インチ)のサイズをご用意しており、前面に入射角45°用に最適化された0.9~2.6 µm域用ビームスプリッターコーティングが施されています。誘電体コーティングによって、長期にわたる安定性が得られます。

このプレート型ビームスプリッタには、N-BK7よりも低い熱膨張係数と高い均一性を示す赤外用の溶融石英基板が使われています。

光学素子の前面および背面から反射された光の相互作用による不要な干渉効果(例えばゴーストイメージ)を低減するために、この広帯域プレートビームスプリッ タには2つの特長が付与されています。1つは前面のビームスプリッターコーティングと同じ動作波長範囲用に設計された反射防止(AR)コーティングが背面 に施されているという点です。コーティング無しの基板に入射する場合、入射光の約4%は反射されます。ビームスプリッタの背面にARコーティングを施すことに よって、この割合はコーティングの全波長範囲に渡り、平均1.5%未満にまで低減されます。もうひとつは、ビームスプリッタの裏面に30 arcminのウェッジが付いているという点です。このウェッジにより、ARコーティング面から反射された光の一部は干渉せずに発散します。

各円形プレート型ビームスプリッタには、型番とARコーティングされたウェッジ付き面を示す矢印が刻印されています(「仕様」タブ内で概略図をご覧いただけます)。 顕微鏡フィルターキューブへの取付け用に設計された長方形ビームスプリッタでは、ビームスプリッターコーティング側に型番が刻印されているので、前面と裏面の識別が容易です。

当社で行った特性確認実験: ビームスプリッタの種類に基づく比較

当社のプレート型、キューブ型、ペリクル型のビームスプリッタでの偏光角度、分岐比、出力パワーの総計を比較しました。無偏光型のビームスプリッタについてはそれぞれ似たような機能を有していますが、詳細な機能についてはビームスプリッタの種類によって異なります。ビームスプリッタには、種類によってそれぞれ長所と短所があります。変動に敏感な実験においては、適切なビームスプリッタの選択が重要となります。ここでは、3種類の一般的な無偏光のビームスプリッタを詳しく分析して、光学的パラメータを比較しました。

この実験では、光源として当社旧製品の安定化HeNeレーザHRS015(代替品はHRS015B)を使用しています。レーザ光の偏光軸を45°とするために、直線偏光子を使用し、S偏光とP偏光が等しくビームスプリッタに入射するようにしました。次に実験対象のビームスプリッタが光路中に配置され、分岐後のビーム光が適切なディテクタに送出されるようにセットしました。このセットアップで、光学素子を出力する総光パワーの値、偏光状態、分岐比や入射角による影響に関する実験検証を行いました。

下記のプロット図は、3種類のビームスプリッタで得られた測定値を図示しています。これらのグラフによって各光学素子の性能が簡単に比較できます。左下のプロット図は、各光学素子の出力光パワーの総計を示しています。この測定結果は、入射光のパワーに対する出力光パワーの総計の変化を示しています。この結果をみると、プレート型とペリクル型のビームスプリッタの性能は類似していますが、キューブ型では内部で光が吸収されている可能性が推測されます。さらにこのプロット図は、出力光パワーの総計と入射角の間に相関関係がないことを示唆しています。下の中央にあるグラフでは、各光学素子での出射偏光状態を比較しています。キューブ型では、反射光と透過光で同様の偏光角になっており、一方でプレート型では、偏光角の差異が最も大きくなっています。右下のプロット図は、実験で得られた分岐比の結果をまとめており、各ビームスプリッタの種類ごとに、入射パワーの変化に対する分岐比の結果を示しています。この結果から、50/50のパワーの分岐においては、プレート型ビームスプリッタが最も理想値に近い数値を示しています。この実験に使用された装置や実験結果の詳細はこちらをクリックしてご覧ください。

ビームスプリッタのセレクションガイド

当社ではビームを強度比や偏光に基づいて分岐する、様々なタイプのビームスプリッタを豊富に取り揃えています。プレート型やキューブ型のビームスプリッタのほか、形状の異なるペリクルや複屈折性結晶を用いた製品もございます。それぞれの概要や特徴・用途の比較についてはこちらの概要タブをご覧ください。ビームスプリッタの多くはマウント付きまたはマウント無しでご提供しています。以下では、当社のビームスプリッタの全製品を一覧できます。各種類のMore [+]をクリックすると、ビームスプリッタの種類、波長域、分岐比/消光比、透過率、サイズなどの詳細をご覧いただけます。

プレート型ビームスプリッタ

偏光無依存ビームスプリッタ、プレート型
偏光ビームスプリッタ、プレート型
  • 特記がない限り入射角は45°
  • 円形光学素子のみ30 arcminウェッジ付き
  • P偏光用に設計されています。

キューブ型ビームスプリッタ

Non-Polarizing Cube Beamsplitters
Polarizing Cube and Polyhedron Beamsplitters
TypeWavelength RangeExtinction Ratio
(TP:TS)
Typical TransmissionAR Coated
Faces
CementedAvailable Cube/ Polyhedron Side Length
Standard:
Unmounted
16 mm Cage Cube
30 mm Cage Cube
420 - 680 nm>1000:1Graph IconYesYesUnmounted:
5 mm, 10 mm, 1/2",
20 mm, 1", and 2"

Mounted:
20 mm in a 16 mm Cage Cube,
1" in a 30 mm Cage Cube
620 - 1000 nmGraph Icon
700 - 1300 nmGraph Icon
900 - 1300 nmGraph Icon
1200 - 1600 nmGraph Icon
Wire Grid:
Unmounted
30 mm Cage Cube
400 - 700 nm>1000:1 (AOI: 0° - 5°)
>100:1 (AOI: 0° - 25°)
Graph Icon
P-Pol.



S-Pol.
YesYesUnmounted:
1"

Mounted:
20 mm in a 16 mm Cage Cube,
1" in a 30 mm Cage Cube
High-Power Laser Line:
Unmounted
30 mm Cage Cube
355 nm>2000:1Graph IconNoUnmounted:
1/2" and 1"

Mounted:
1" in a 30 mm Cage Cube
405 nmGraph Icon
532 nmGraph Icon
633 nmGraph Icon
780 - 808 nmGraph Icon
1064 nmGraph Icon
Laser Line:
Unmounted
30 mm Cage Cube
532 nm>3000:1Graph IconYesYesUnmounted:
10 mm, 1/2", and 1"

Mounted:
1" in a 30 mm Cage Cube
633 nmGraph Icon
780 nmGraph Icon
980 nmGraph Icon
1064 nmGraph Icon
1550 nmGraph Icon
High Extinction Ratio, High-Power, Broadband Polyhedrons700 - 1100 nm >1000:1 (700 - 1100 nm)
 >5000:1 (750 - 1000 nm)
 >10 000:1 (800 - 900 nm)
YesNo12.7 mm
(Input/Output Face, Square)
900 - 1300 nm>1000:1 (900 - 1300 nm)
 >10 000:1 (900 - 1250 nm)
>100 000:1 (980 - 1080 nm)
10.0 mm and 5.0 mm
(Input/Output Face, Square)
Laser-Line Variable532 nmNot SpecifiedNo Graph AvailableYesYesAssembly Mounted
in a 30 mm Cage Cube
633 nm
780 nm
1064 nm
1550 nm
Broadband Variable 420 - 680 nmNot SpecifiedNo Graph AvailableYesYesAssembly Mounted
in a 30 mm Cage Cube
690 - 1000 nm
900 - 1200 nm
1200 - 1600 nm
Circular
Polarizer/Beamsplitter
532 nmNot SpecifiedNo Graph AvailableYesYesAssembly Mounted
in a 30 mm Cage Cube
633 nm
780 nm
1064 nm
1550 nm

ペリクルビームスプリッタ

偏光無依存ビームスプリッタ、ペリクル型

結晶ビームスプリッタ

偏光ビームスプリッタ、結晶型
  • 保護用筐体、ネジ切り無しリング、またはシリンダにマウント済み
  • マウント無しの製品と保護用筐体またはネジ切り無しシリンダにマウント済みの製品をご用意しています。

その他

その他のビームスプリッタ
Damage Threshold Specifications
Coating Designation
(Item # Prefix)
Damage Threshold
BSW2-10 J/cm2 (1542 nm, 10 ns, 10 Hz, Ø0.189 mm)

当社の赤外域用溶融石英プレート型ビームスプリッタの損傷閾値データ

右の仕様は当社の赤外域用溶融石英プレート型ビームスプリッタの損傷閾値の測定値です。損傷閾値は、ビームスプリッタのサイズにかかわらずすべての赤外域用溶融石英プレート型ビームスプリッタで同じです。

 

レーザによる損傷閾値について

このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。

テスト方法

当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。

初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。

LIDT metallic mirror
上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。
LIDT BB1-E02
Example Test Data
Fluence# of Tested LocationsLocations with DamageLocations Without Damage
1.50 J/cm210010
1.75 J/cm210010
2.00 J/cm210010
2.25 J/cm21019
3.00 J/cm21019
5.00 J/cm21091

試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。

CWレーザと長パルスレーザ

光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。

パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。

Linear Power Density Scaling

線形パワー密度におけるLIDTに対するパルス長とスポットサイズ。長パルス~CWでは線形パワー密度はスポットサイズにかかわらず一定です。 このグラフの出典は[1]です。

Intensity Distribution

繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。

ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。

  1. レーザの波長
  2. ビーム径(1/e2)
  3. ビームのおおよその強度プロファイル(ガウシアン型など)
  4. レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)

ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。

ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。

次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。

CW Wavelength Scaling

この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。

パルスレーザ

先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。

パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。

Pulse Durationt < 10-9 s10-9 < t < 10-7 s10-7 < t < 10-4 st > 10-4 s
Damage MechanismAvalanche IonizationDielectric BreakdownDielectric Breakdown or ThermalThermal
Relevant Damage SpecificationNo Comparison (See Above)PulsedPulsed and CWCW

お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。

Energy Density Scaling

エネルギ密度におけるLIDTに対するパルス長&スポットサイズ。短パルスでは、エネルギ密度はスポットサイズにかかわらず一定です。このグラフの出典は[1]です。

  1. レーザの波長
  2. ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
  3. レーザのパルス幅
  4. パルスの繰返周波数(prf)
  5. 実際に使用するビーム径(1/e2 )
  6. ビームのおおよその強度プロファイル(ガウシアン型など)

ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。

次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。

Pulse Wavelength Scaling

 

波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。

ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。

次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。

Pulse Length Scaling

お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1997).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).

レーザーシステムが光学素子に損傷を引き起こすかどうか判断するプロセスを説明するために、レーザによって引き起こされる損傷閾値(LIDT)の計算例をいくつかご紹介します。同様の計算を実行したい場合には、右のボタンをクリックしてください。計算ができるスプレッドシートをダウンロードいただけます。ご使用の際には光学素子のLIDTの値と、レーザーシステムの関連パラメータを緑の枠内に入力してください。スプレッドシートでCWならびにパルスの線形パワー密度、ならびにパルスのエネルギ密度を計算できます。これらの値はスケーリング則に基づいて、光学素子のLIDTの調整スケール値を計算するのに用いられます。計算式はガウシアンビームのプロファイルを想定しているため、ほかのビーム形状(均一ビームなど)には補正係数を導入する必要があります。 LIDTのスケーリング則は経験則に基づいていますので、確度は保証されません。なお、光学素子やコーティングに吸収があると、スペクトル領域によってLIDTが著しく低くなる場合があります。LIDTはパルス幅が1ナノ秒(ns)未満の超短パルスには有効ではありません。

Intensity Distribution
ガウシアンビームの最大強度は均一ビームの約2倍です。

CWレーザの例
波長1319 nm、ビーム径(1/e2)10 mm、パワー0.5 Wのガウシアンビームを生成するCWレーザーシステム想定します。このビームの平均線形パワー密度は、全パワーをビーム径で単純に割ると0.5 W/cmとなります。

CW Wavelength Scaling

しかし、ガウシアンビームの最大パワー密度は均一ビームの約2倍です(右のグラフ参照)。従って、システムのより正確な最大線形パワー密度は1 W/cmとなります。

アクロマティック複レンズAC127-030-CのCW LIDTは、1550 nmでテストされて350 W/cmとされています。CWの損傷閾値は通常レーザ光源の波長に直接スケーリングするため、LIDTの調整値は以下のように求められます。

CW Wavelength Scaling

LIDTの調整値は350 W/cm x (1319 nm / 1550 nm) = 298 W/cmと得られ、計算したレーザーシステムのパワー密度よりも大幅に高いため、この複レンズをこの用途に使用しても安全です。

ナノ秒パルスレーザの例:パルス幅が異なる場合のスケーリング
出力が繰返し周波数10 Hz、波長355 nm、エネルギ1 J、パルス幅2 ns、ビーム径(1/e2)1.9 cmのガウシアンビームであるNd:YAGパルスレーザーシステムを想定します。各パルスの平均エネルギ密度は、パルスエネルギをビームの断面積で割って求めます。

Pulse Energy Density

上で説明したように、ガウシアンビームの最大エネルギ密度は平均エネルギ密度の約2倍です。よって、このビームの最大エネルギ密度は約0.7 J/cm2です。

このビームのエネルギ密度を、広帯域誘電体ミラーBB1-E01のLIDT 1 J/cm2、そしてNd:YAGレーザーラインミラーNB1-K08のLIDT 3.5 J/cm2と比較します。LIDTの値は両方とも、波長355 nm、パルス幅10 ns、繰返し周波数10 Hzのレーザで計測しました。従って、より短いパルス幅に対する調整を行う必要があります。 1つ前のタブで説明したようにナノ秒パルスシステムのLIDTは、パルス幅の平方根にスケーリングします:

Pulse Length Scaling

この調整係数により広帯域誘電体ミラーBB1-E01のLIDTは0.45 J/cm2に、Nd:YAGレーザーラインミラーのLIDTは1.6 J/cm2になり、これらをビームの最大エネルギ密度0.7 J/cm2と比較します。広帯域ミラーはレーザによって損傷を受ける可能性があり、より特化されたレーザーラインミラーがこのシステムには適していることが分かります。

ナノ秒パルスレーザの例:波長が異なる場合のスケーリング
波長1064 nm、繰返し周波数2.5 Hz、パルスエネルギ100 mJ、パルス幅10 ns、ビーム径(1/e2)16 mmのレーザ光を、NDフィルタで減衰させるようなパルスレーザーシステムを想定します。これらの数値からガウシアン出力における最大エネルギ密度は0.1 J/cm2になります。Ø25 mm、OD 1.0の反射型NDフィルタ NDUV10Aの損傷閾値は355 nm、10 nsのパルスにおいて0.05 J/cm2で、同様の吸収型フィルタ NE10Aの損傷閾値は532 nm、10 nsのパルスにおいて10 J/cm2です。1つ前のタブで説明したように光学素子のLIDTは、ナノ秒パルス領域では波長の平方根にスケーリングします。

Pulse Wavelength Scaling

スケーリングによりLIDTの調整値は反射型フィルタでは0.08 J/cm2、吸収型フィルタでは14 J/cm2となります。このケースでは吸収型フィルタが光学損傷を防ぐには適した選択肢となります。

マイクロ秒パルスレーザの例
パルス幅1 µs、パルスエネルギ150 µJ、繰返し周波数50 kHzで、結果的にデューティーサイクルが5%になるレーザーシステムについて考えてみます。このシステムはCWとパルスレーザの間の領域にあり、どちらのメカニズムでも光学素子に損傷を招く可能性があります。レーザーシステムの安全な動作のためにはCWとパルス両方のLIDTをレーザーシステムの特性と比較する必要があります。

この比較的長いパルス幅のレーザが、波長980 nm、ビーム径(1/e2)12.7 mmのガウシアンビームであった場合、線形パワー密度は5.9 W/cm、1パルスのエネルギ密度は1.2 x 10-4 J/cm2となります。これをポリマーゼロオーダ1/4波長板WPQ10E-980のLIDTと比較してみます。CW放射に対するLIDTは810 nmで5 W/cm、10 nsパルスのLIDTは810 nmで5 J/cm2です。前述同様、光学素子のCW LIDTはレーザ波長と線形にスケーリングするので、CWの調整値は980 nmで6 W/cmとなります。一方でパルスのLIDTはレーザ波長の平方根とパルス幅の平方根にスケーリングしますので、1 µsパルスの980 nmでの調整値は55 J/cm2です。光学素子のパルスのLIDTはパルスレーザのエネルギ密度よりはるかに大きいので、個々のパルスが波長板を損傷することはありません。しかしレーザの平均線形パワー密度が大きいため、高出力CWビームのように光学素子に熱的損傷を引き起こす可能性があります。


Posted Comments:
Todd Johnson  (posted 2023-08-27 13:53:48.227)
Do you have reflectance data for 0 degree AOI on these beamsplitters? Thanks!
cdolbashian  (posted 2023-08-30 01:01:34.0)
Thank you for reaching out to us with this inquiry. We take out reflection data at an 8° AOI, which we have found to be nominally identical to data with AOI <8° while being much more straightforward to acquire compared to normal-incidence reflection data. I have reached out to you with such data.
yukio manabe  (posted 2021-03-03 00:02:42.32)
About your BSW22, What is the damage threshold by CW laser at 1940nm wavelength ? 10^5 W/cm ?
asundararaj  (posted 2021-03-09 03:07:17.0)
Thank you for contacting Thorlabs. We've done a very limited amount of testing with our beam splitters in the 2 µm region and hence, we do not have a CW damage threshold for the BSW22 at 1940 at the moment.
yoonsmith  (posted 2017-06-14 14:07:48.593)
What is the birefregence of material used on BSW23 (Beam splitter) in 1550 nm region ? Does it generate optical path length variation about 100 nm in BSW23 induced by polarization state?
tfrisch  (posted 2017-07-20 11:36:15.0)
Hello, thank you for contacting Thorlabs. I would expect these beamsplitters to have no significant birefringence as both the substrate and coatings are amorphous. I will reach out to you directly to discuss this.
santander  (posted 2016-08-11 17:09:46.617)
I need an approximate 50% spliter with metallic coating (prefer silver). Glass OK visible up to 12 µM wavelength. Coating must be exposed and electrically conductive. It is a semitransparent electrode. Size is 3/8 by 2.5 inches. I can cut from larger or possibly pair smaller. - Bill McCarthy
jlow  (posted 2016-08-16 10:14:16.0)
Response from Jeremy at Thorlabs: The only exposed metallic coating we can do at the moment is gold coating. We will contact you directly about quoting this.
pellopt  (posted 2013-03-06 09:52:04.303)
BSW24 on IR fused silica. What are the Tavg and Ravg values at 840 to 860 nm for 45 deg aoi? What is the best flatness you can hold? Can this be obtained with a much smaller wedge? How about <10 arc sec? Thank you, Samuel
jlow  (posted 2013-03-07 15:29:00.0)
Response from Jeremy at Thorlabs: We are working on getting extended wavelength data. With respect to your other questions, we will get in contact with you directly to discuss about your application requirement for the beamsplitter.
tcohen  (posted 2013-01-17 14:04:00.0)
Response from Tim at Thorlabs: Thank you for contacting us! We may be able to quote this and I will contact you to discuss your requirements.
oliva  (posted 2013-01-15 09:49:24.953)
Question concerning IR Fused Silica Broadband Plate Beamsplitters. The flatness of BSW23 is only lambda/2. Would it be possible to have the broad-band coating on a lambda/10 (goal lambda/20) substrate?
bdada  (posted 2012-02-07 14:46:00.0)
Response from Buki at Thorlabs: Thank you for using our feedback tool. The damage threshold for the IR Fused Silica beamsplitter is 10 J/cm2 for a 0.189mm spot size at 1542nm, 10ns pulse width and 10Hz rep rate. Please contact TechSupport@thorlabs.com if you have additional questions.
davidbeeler  (posted 2012-02-07 09:12:31.0)
What is the damage threshold for this beamsplitter?
Back to Top

プレート型ビームスプリッタ、分岐比50:50

220~2600 nmの生データはこちらからダウンロードいただけます。
0.9~2.6 µm用にコーティングされた広帯域プレート型ビームスプリッタの透過率および反射率を示しています。これらのデータは入射角45°で取得しました。青い網掛け領域は、ビームスプリッタのコーティングの波長範囲です。反射率と透過率は、UV/可視/近赤外光用の分光光度計Perkin Elmer Lambda 950に方解石偏光子のアタッチメントを取り付け、それぞれ独立に測定しました。

Item #SizeThicknessWedge AngleSplit Ratio (R:T)Overall PerformanceInfo
BSW22Ø1/2"3.0 mm30 arcmin50:50Tabs = 50 ± 10%, Rabs = 50 ± 10%,
Tabs + Rabs > 99%
|Ts - Tp| < 40% and |Rs - Rp| < 40%, 45° AOI
info
BSW23Ø1"5.0 mm30 arcmin50:50info
BSW23R25 mm x 36 mm1.0 mmNo Wedge50:50info
BSW24Ø2"8.0 mm30 arcmin50:50info
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
BSW22 Support Documentation
BSW22Ø1/2" 50:50 IR Fused Silica Plate BS, Coating: 0.9 - 2.6 µm, t = 3 mm
¥40,199
7-10 Days
BSW23 Support Documentation
BSW23Ø1" 50:50 IR Fused Silica Plate BS, Coating: 0.9 - 2.6 µm, t = 5 mm
¥45,244
7-10 Days
BSW23R Support Documentation
BSW23R25 mm x 36 mm 50:50 IR Fused Silica Plate BS, Coating: 0.9 - 2.6 µm, t = 1 mm
¥45,732
Today
BSW24 Support Documentation
BSW24Ø2" 50:50 IR Fused Silica Plate BS, Coating: 0.9 - 2.6 µm, t = 8 mm
¥50,776
7-10 Days