N-BK7平凸レンズ、ARコーティング:350~700 nm

- Positive Focal Length and Near Best Form for Infinite Conjugate Applications
- Many Thorlabs Lenses Available in Zemax Catalog
LA1740-A
(Ø75 mm)
LA1401-A
(Ø2")
LA1274-A
(Ø30 mm)
LA1951-A
(Ø1")
LA1252-A
(Ø25 mm)
LA1859-A
(Ø18 mm)
LA1540-A
(Ø1/2")
LA1576-A
(Ø9 mm)
LA1116-A
(Ø6 mm)
Lens Kits
Available
LA1039-A
(Ø3 mm)
LA1024-A
(Ø2 mm)
LA1385-A
(Ø1.5")

Please Wait
Common Specifications | ||
---|---|---|
Diameters | 2 mm and 3 mm | 6 mm, 9 mm, 1/2", 18 mm, 25 mm, 1", 30 mm, 1.5", 2", and 75 mm |
Lens Shape | Plano-Convex | |
Substrate Material | N-BK7 (Grade A)a | |
AR Coating Range | 350 - 700 nm (-A Coating) | |
Reflectanceb over Coating Range (Avg.) @ 0° AOI | < 0.5% | |
Design Wavelength | 587.6 nmc | |
Index of Refraction | 1.515d | |
Surface Flatness (Plano Side) | λ/2d | |
Spherical Surface Powere (Convex Side) | 3λ/2d | |
Surface Irregularity (Peak to Valley) | λ/4d | |
Surface Quality | 60-40 Scratch-Dig | 40-20 Scratch-Dig |
Thickness Tolerance | ±0.03 mm | ±0.1 mm |
Diameter Tolerance | +0.00 / -0.02 mm | +0.0 / -0.1 mm |
Centration | ≤ 5 arcmin | < 3 arcmin |
Damage Thresholdf | 7.5 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.456 mm) | |
Abbe Number | vd = 64.17 | |
Clear Aperture | > 90% of Diameterg | |
Focal Length Tolerance | ±1% |
![]() |
---|
下の型番横の赤いアイコン(資料)をクリックするとZemaxファイルをダウンロードいただけます。またこちらからは当社の全ての Zemax ファイル の一括ダウンロードが可能です。 |
特長
- 材質: N-BK7
- ARコーティング範囲: 350~700 nm
- 焦点距離:4~2500 mm
この平凸レンズは、RoHS準拠のBK7ガラス(N-BK7)製で350~700 nm範囲にわたって反射防止(AR)コーティングが施されています。N-BK7ガラスは通常、UV溶融石英の利点(UV域での優れた透過率や低い熱膨張率)を必要としない場合に選ばれています。レンズは正の焦点距離を持ち、無限および有限共役用途ではベストフォームに近い形状となります。
平凸レンズは、コリメートしたビームを後方焦点へ集光したり、点光源からの光をコリメー トするのにお使いいただけます。 球面収差を最小に抑えるためには、集光の際にはコリメート光源をレンズの曲面から入射する必要があります。また、コリメートする際には点光源を平坦な面に入射する必要があります。
レンズの焦点距離は、下記の厚レンズの公式で計算できます。
f = R/(n-1),
ここで n は屈折率で、R はレンズ面の曲率半径です。これらのレンズはN-BK7製、アッべ数(分散の指標)は64.17です。
こちらのN-BK7 平凸レンズはコーティング無しの製品と、レンズの各表面からの反射光を減少させる5種類の反射防止コーティング(-A、 -AB、-B、-Cまたは-D)のうちのいずれかをコーティングした製品をご用意しております(下のSelection Guide表のリンクからご覧いただけます)。コーティング無しの基板では入射光の約4%が各表面で反射し、損失となるため、ARコーティング付きの平凸レンズは特に複数の光学素子を使用する用途で有効です。ARコーティングはとりわけ低光量の用途においては重要で、また複数の光学素子による反射の影響(ゴーストイメージなど)を防ぎます。両面にARコーティングが施されている光学素子は、特に複数の光学素子を用いる用途では必要性が高くなります。コーティングに関する詳細は「グラフ」タブを参照ください。
これらのレンズの取付け用に固定式レンズマウント もご用意しております。曲率の大きいレンズを取り付ける際にスパナレンチ用(詳細は「取付けオプション」タブ参照)に隙間を作る、SM05、SM1、SM2ネジ付きの厚型固定リングもご用意しています。
当社では、N-BK7レンズキットもご提供しています。詳細はこちらをご覧ください。
N-BK7 Plano-Convex Lens Selection Guide | |
---|---|
Unmounted Lenses | Mounted Lenses |
Uncoated | Uncoated |
-A Coating (350 - 700 nm) | -A Coating (350 - 700 nm) |
-AB Coating (400 - 1100 nm) | -AB Coating (400 - 1100 nm) |
-B Coating (650 - 1050 nm) | -B Coating (650 - 1050 nm) |
-C Coating (1050 - 1700 nm) | -C Coating (1050 - 1700 nm) |
-D Coating (1650 - 3000 nm) | - |
カスタムコーティングも承ります。お見積については、当社までお問い合わせください。
Quick Links to Other Spherical Singlets | ||||||
---|---|---|---|---|---|---|
Plano-Convex | Bi-Convex | Best Form | Plano-Concave | Bi-Concave | Positive Meniscus | Negative Meniscus |
下に掲載されているのはRoHS準拠BK7ガラスから作られたN-BK7レンズの透過率曲線です。全透過率は、厚さ10 mm、ARコーティング無しのサンプルで得られたもので、表面反射を含んでいます。N-BK7平凸レンズは、コーティング無しタイプと、350~700 nm(-A)、400~1100 nm (-AB)、650~1050 nm (-B)、1050~1700 nm (-C)または1.65~3.0 µm(-D)の広帯域ARコーティング付きタイプからお選びいただけます。
こちらの高性能の多層ARコーティングの平均反射率は、仕様波長範囲において0.5%未満(1面あたり)です(ただしABならびにDコーティングでは1.0%未満)。また、入射角0°~30°(NA 0.5)において優れた性能を発揮します。30°よりも大きな入射角でご使用になる場合は、45°の入射角で最適化されたカスタムコーティングをお勧めします。このコーティングの有効入射角は25°~52°です。下のグラフは、当シリーズ製品の標準的なコーティングの波長特性を示しています。広帯域ARコーティングの典型的な吸収率は0.25%ですが、この反射率のグラフには反映されていません。
はじめに
当社では、単レンズが当社基準および仕様に適合していることを確認するため、一連の品質管理を実施しています。この品質管理にはレンズのイメージング機能の工程内検査や、表面品質およびサイズの最終検査が含まれます。各製品の仕様は赤いアイコンをクリックするとご覧いただけます。ここでは、品質検査の一般的なプロセスについて説明しています。
単レンズの品質管理
単レンズが仕様通りに成形された後、工程内検査が行われます。MIL-PRF-13830B(下記参照)に準じたレベルVIの抜き取りを行い、焦点距離、イレギュラリティ、表面指数(Surface Power)を検査します。この3つの仕様は適正なイメージングを行う際に不可欠です。部品のイレギュラリティは、単レンズの素材にもよりますが、633 nmにおいて1/4波長または1/2波長以下を維持しています。下のグラフは単レンズの前面および裏面のイレギュラリティを200バッチにわたって測定したデータです。
この時点で、コーティング無しの単レンズとして最終検査に進むものと、反射防止(AR)コーティングが施されるものに分かれます。光学コーティングについては個別の工程内検査が実施されます。ARコーティングが適正に施されていることを確認するために、分光光度計を用いてコーティングサンプルの反射率および透過率を測定します。その際使用する厚さ2 mmのコーティングサンプルは、同ロット内の部品と同じ素材にします。反射率を測定する場合、コーティングのロットごとに最低1個のサンプルを使用します。透過型の光学素子は前面と裏面それぞれにARコーティングが施されるため、透過率の検査にも両面にコーティングが施されたサンプルを1個使用します。大量のロットでは、複数のサンプルを使用して蒸着チャンバの均一性を確認します。ロットごとにコーティング性能を検査することで、経時的な変化を少なく維持することができます。コーティングの変化については下の表をご覧ください。
コーティング無しおよびARコーティング付きの単レンズの最終検査では、表面品質や面取り角、開口が仕様書の記載と合致していることを確認するために、外径および厚さのバッチ検査や全数目視検査などが実施されます。表面品質は最表面の検査ですが、表面にスクラッチ&ディグおよびその他の含有物があると、単レンズを高出力光源と一緒に使用した場合に損傷を受けやすくなります。これらの検査はMIL-PRF-13830Bの要件に合った、クリーンで照明の薄暗い部屋で実施されます。薄暗い部屋で1つの光源だけを用いて試験を実施することにより、ガラス内部のムラが光沢や反射によって不明瞭にならずに見つけやすくなります。
MIL-PRF-13830B:光学部品の性能仕様
MIL-PRF-13830Bは、ARDEC(the U.S. Army Armament Research, Development and Engineering Center)のDefense Quality and Standardization Officeによる、光学部品の製造、組み立ておよび検査の仕様に関する文書です。もともとは、米軍で使用されている製品を装備に組み込むための規格でしたが、数多くの光学メーカによって採用されるようになりました。資料のコピーをダウンロードするには、こちらをクリックしてください。
-A Coating 350 nm to 700 nm | -B Coating 650 nm to 1050 nm | -C Coating 1050 nm to 1700 nm | Singlet Irregularity | ||
Coating Variance: Transmission | ![]() Click to Enlarge | ![]() Click to Enlarge | ![]() Click to Enlarge | ![]() Click to Enlarge | |
Coating Variance: Reflectance | ![]() Click to Enlarge | ![]() Click to Enlarge | ![]() Click to Enlarge |
厚い球面レンズの焦点距離は、下の厚レンズ方程式を使って計算できます。この式では、nl はレンズの屈折率、R1 および R2 はそれぞれレンズ面1と2の曲率半径、d はレンズの中心厚さです。
平凸レンズの焦点距離の計算に厚レンズ方程式を使う場合、R1=∞ 、R2=-Rとなります。Rの前に付いているマイナス記号はレンズの公式を導く際に使用された決まりごとです。Rの値は下記の仕様表やレンズの図面に掲載されています。これらを代入すると厚レンズの公式は下のようになります。
上記の厚レンズ方程式を使って計算されるレンズの焦点距離は、第2(後側)主面(H") からコリメートビームがレンズの曲面側に入力して集光される位置までの距離となります。厚レンズの主面位置は次の方程式で計算することができます。
しかし、厚レンズ方程式を平凸レンズ主面位置の計算に使用する場合、H' はゼロに、H" は下式に簡略化されます。
fb はレンズの後方焦点距離で、レンズの作動距離とも呼ばれます。
Damage Threshold Specifications | |
---|---|
Coating Designation (Item # Suffix) | Damage Threshold |
-A | 7.5 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.456 mm) |
当社のAコーティング付きN-BK7単レンズの損傷閾値データ
右の仕様は当社のAコーティング付きN-BK7単レンズの損傷閾値の測定データです。全てのAコーティング付きN-BK7単レンズの損傷閾値の仕様は、レンズのサイズや焦点距離にかかわらず同じです。
レーザによる損傷閾値について
このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。
テスト方法
当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。
初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。

上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。

Example Test Data | |||
---|---|---|---|
Fluence | # of Tested Locations | Locations with Damage | Locations Without Damage |
1.50 J/cm2 | 10 | 0 | 10 |
1.75 J/cm2 | 10 | 0 | 10 |
2.00 J/cm2 | 10 | 0 | 10 |
2.25 J/cm2 | 10 | 1 | 9 |
3.00 J/cm2 | 10 | 1 | 9 |
5.00 J/cm2 | 10 | 9 | 1 |
試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。
CWレーザと長パルスレーザ
光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。
パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。
線形パワー密度におけるLIDTに対するパルス長とスポットサイズ。長パルス~CWでは線形パワー密度はスポットサイズにかかわらず一定です。 このグラフの出典は[1]です。

繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。
ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。
- レーザの波長
- ビーム径(1/e2)
- ビームのおおよその強度プロファイル(ガウシアン型など)
- レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)
ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。
ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。
次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。
この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。
当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。
パルスレーザ
先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。
パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。
Pulse Duration | t < 10-9 s | 10-9 < t < 10-7 s | 10-7 < t < 10-4 s | t > 10-4 s |
---|---|---|---|---|
Damage Mechanism | Avalanche Ionization | Dielectric Breakdown | Dielectric Breakdown or Thermal | Thermal |
Relevant Damage Specification | No Comparison (See Above) | Pulsed | Pulsed and CW | CW |
お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。
エネルギ密度におけるLIDTに対するパルス長&スポットサイズ。短パルスでは、エネルギ密度はスポットサイズにかかわらず一定です。このグラフの出典は[1]です。
- レーザの波長
- ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
- レーザのパルス幅
- パルスの繰返周波数(prf)
- 実際に使用するビーム径(1/e2 )
- ビームのおおよその強度プロファイル(ガウシアン型など)
ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。
次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。
波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。
ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。
次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。
お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。
当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。
[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1998).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).
レーザーシステムが光学素子に損傷を引き起こすかどうか判断するプロセスを説明するために、レーザによって引き起こされる損傷閾値(LIDT)の計算例をいくつかご紹介します。同様の計算を実行したい場合には、右のボタンをクリックしてください。計算ができるスプレッドシートをダウンロードいただけます。ご使用の際には光学素子のLIDTの値と、レーザーシステムの関連パラメータを緑の枠内に入力してください。スプレッドシートでCWならびにパルスの線形パワー密度、ならびにパルスのエネルギ密度を計算できます。これらの値はスケーリング則に基づいて、光学素子のLIDTの調整スケール値を計算するのに用いられます。計算式はガウシアンビームのプロファイルを想定しているため、ほかのビーム形状(均一ビームなど)には補正係数を導入する必要があります。 LIDTのスケーリング則は経験則に基づいていますので、確度は保証されません。なお、光学素子やコーティングに吸収があると、スペクトル領域によってLIDTが著しく低くなる場合があります。LIDTはパルス幅が1ナノ秒(ns)未満の超短パルスには有効ではありません。

Figure 71A ガウシアンビームの最大強度は均一ビームの約2倍です。
CWレーザの例
波長1319 nm、ビーム径(1/e2)10 mm、パワー0.5 Wのガウシアンビームを生成するCWレーザーシステム想定します。このビームの平均線形パワー密度は、全パワーをビーム径で単純に割ると0.5 W/cmとなります。
しかし、ガウシアンビームの最大パワー密度は均一ビームの約2倍です(Figure 71A参照)。従って、システムのより正確な最大線形パワー密度は1 W/cmとなります。
アクロマティック複レンズAC127-030-CのCW LIDTは、1550 nmでテストされて350 W/cmとされています。CWの損傷閾値は通常レーザ光源の波長に直接スケーリングするため、LIDTの調整値は以下のように求められます。
LIDTの調整値は350 W/cm x (1319 nm / 1550 nm) = 298 W/cmと得られ、計算したレーザーシステムのパワー密度よりも大幅に高いため、この複レンズをこの用途に使用しても安全です。
ナノ秒パルスレーザの例:パルス幅が異なる場合のスケーリング
出力が繰返し周波数10 Hz、波長355 nm、エネルギ1 J、パルス幅2 ns、ビーム径(1/e2)1.9 cmのガウシアンビームであるNd:YAGパルスレーザーシステムを想定します。各パルスの平均エネルギ密度は、パルスエネルギをビームの断面積で割って求めます。
上で説明したように、ガウシアンビームの最大エネルギ密度は平均エネルギ密度の約2倍です。よって、このビームの最大エネルギ密度は約0.7 J/cm2です。
このビームのエネルギ密度を、広帯域誘電体ミラーBB1-E01のLIDT 1 J/cm2、そしてNd:YAGレーザーラインミラーNB1-K08のLIDT 3.5 J/cm2と比較します。LIDTの値は両方とも、波長355 nm、パルス幅10 ns、繰返し周波数10 Hzのレーザで計測しました。従って、より短いパルス幅に対する調整を行う必要があります。 1つ前のタブで説明したようにナノ秒パルスシステムのLIDTは、パルス幅の平方根にスケーリングします:
この調整係数により広帯域誘電体ミラーBB1-E01のLIDTは0.45 J/cm2に、Nd:YAGレーザーラインミラーのLIDTは1.6 J/cm2になり、これらをビームの最大エネルギ密度0.7 J/cm2と比較します。広帯域ミラーはレーザによって損傷を受ける可能性があり、より特化されたレーザーラインミラーがこのシステムには適していることが分かります。
ナノ秒パルスレーザの例:波長が異なる場合のスケーリング
波長1064 nm、繰返し周波数2.5 Hz、パルスエネルギ100 mJ、パルス幅10 ns、ビーム径(1/e2)16 mmのレーザ光を、NDフィルタで減衰させるようなパルスレーザーシステムを想定します。これらの数値からガウシアン出力における最大エネルギ密度は0.1 J/cm2になります。Ø25 mm、OD 1.0の反射型NDフィルタ NDUV10Aの損傷閾値は355 nm、10 nsのパルスにおいて0.05 J/cm2で、同様の吸収型フィルタ NE10Aの損傷閾値は532 nm、10 nsのパルスにおいて10 J/cm2です。1つ前のタブで説明したように光学素子のLIDTは、ナノ秒パルス領域では波長の平方根にスケーリングします。
スケーリングによりLIDTの調整値は反射型フィルタでは0.08 J/cm2、吸収型フィルタでは14 J/cm2となります。このケースでは吸収型フィルタが光学損傷を防ぐには適した選択肢となります。
マイクロ秒パルスレーザの例
パルス幅1 µs、パルスエネルギ150 µJ、繰返し周波数50 kHzで、結果的にデューティーサイクルが5%になるレーザーシステムについて考えてみます。このシステムはCWとパルスレーザの間の領域にあり、どちらのメカニズムでも光学素子に損傷を招く可能性があります。レーザーシステムの安全な動作のためにはCWとパルス両方のLIDTをレーザーシステムの特性と比較する必要があります。
この比較的長いパルス幅のレーザが、波長980 nm、ビーム径(1/e2)12.7 mmのガウシアンビームであった場合、線形パワー密度は5.9 W/cm、1パルスのエネルギ密度は1.2 x 10-4 J/cm2となります。これをポリマーゼロオーダ1/4波長板WPQ10E-980のLIDTと比較してみます。CW放射に対するLIDTは810 nmで5 W/cm、10 nsパルスのLIDTは810 nmで5 J/cm2です。前述同様、光学素子のCW LIDTはレーザ波長と線形にスケーリングするので、CWの調整値は980 nmで6 W/cmとなります。一方でパルスのLIDTはレーザ波長の平方根とパルス幅の平方根にスケーリングしますので、1 µsパルスの980 nmでの調整値は55 J/cm2です。光学素子のパルスのLIDTはパルスレーザのエネルギ密度よりはるかに大きいので、個々のパルスが波長板を損傷することはありません。しかしレーザの平均線形パワー密度が大きいため、高出力CWビームのように光学素子に熱的損傷を引き起こす可能性があります。
Recommended Mounting Options for Thorlabs Lenses | ||
---|---|---|
Item # | Mounts for Ø2 mm to Ø10 mm Optics | |
Imperial | Metric | |
(Various) | Fixed Lens Mounts and Mini-Series Fixed Lens Mounts for Small Optics, Ø5 mm to Ø10 mm | |
(Various) | Small Optic Adapters for Use with Standard Fixed Lens Mounts, Ø2 mm to Ø10 mm | |
Item # | Mounts for Ø1/2" (Ø12.7 mm) Optics | |
Imperial | Metric | |
LMR05 | LMR05/M | Fixed Lens Mount for Ø1/2" Optics |
MLH05 | MLH05/M | Mini-Series Fixed Lens Mount for Ø1/2" Optics |
LM05XY | LM05XY/M | Translating Lens Mount for Ø1/2" Optics |
SCP05 | 16 mm Cage System, XY Translation Mount for Ø1/2" Optics | |
(Various) | Ø1/2" Lens Tubes, Optional SM05RRC Retaining Ring for High-Curvature Lenses (See Below) | |
Item # | Mounts for Ø1" (Ø25.4 mm) Optics | |
Imperial | Metric | |
LMR1 | LMR1/M | Fixed Lens Mount for Ø1" Optics |
LM1XY | LM1XY/M | Translating Lens Mount for Ø1" Optics |
ST1XY-S | ST1XY-S/M | Translating Lens Mount with Micrometer Drives (Other Drives Available) |
CXY1A | 30 mm Cage System, XY Translation Mount for Ø1" Optics | |
(Various) | Ø1" Lens Tubes, Optional SM1RRC Retaining Ring for High-Curvature Lenses (See Below) | |
Item # | Mount for Ø1.5" Optics | |
Imperial | Metric | |
LMR1.5 | LMR1.5/M | Fixed Lens Mount for Ø1.5" Optics |
(Various) | Ø1.5" Lens Tubes, Optional SM1.5RR Retaining Ring for Ø1.5" Lens Tubes and Mounts | |
Item # | Mounts for Ø2" (Ø50.8 mm) Optics | |
Imperial | Metric | |
LMR2 | LMR2/M | Fixed Lens Mount for Ø2" Optics |
LM2XY | LM2XY/M | Translating Lens Mount for Ø2" Optics |
CXY2 | 60 mm Cage System, XY Translation Mount for Ø2" Optics | |
(Various) | Ø2" Lens Tubes, Optional SM2RRC Retaining Ring for High-Curvature Lenses (See Below) | |
Item # | Adjustable Optic Mounts | |
Imperial | Metric | |
LH1 | LH1/M | Adjustable Mount for Ø0.28" (Ø7.1 mm) to Ø1.80" (Ø45.7 mm) Optics |
LH2 | LH2/M | Adjustable Mount for Ø0.77" (Ø19.6 mm) to Ø2.28" (Ø57.9 mm) Optics |
VG100 | VG100/M | Adjustable Clamp for Ø0.5" (Ø13 mm) to Ø3.5" (Ø89 mm) Optics |
SCL03 | SCL03/M | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics |
SCL04 | SCL04/M | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø3.00" (Ø76.2 mm) Optics |
LH160CA | LH160CA/M | Adjustable Mount for 60 mm Cage Systems, Ø0.50" (Ø13 mm) to Ø2.00" (Ø50.8 mm) Optics |
SCL60CA | SCL60CA/M | Self-Centering Mount for 60 mm Cage Systems, Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics |
曲率が高い光学素子の取付け
当社の固定リングはマウント無しの光学素子をレンズチューブまたは光学マウント内に固定します。リングの位置固定には対応するスパナレンチを使用します。平面光学素子や曲率が低い光学素子用には黒アルマイト製の 固定リングをØ5 mm~Ø101.6 mm(Ø4インチ)まで標準品としてご用意しております。曲率が高い光学素子用には、厚みのある固定リングをØ12.7 mm(Ø1/2インチ)、Ø25.4 mm(Ø1インチ)、Ø50.8 mm(Ø2インチ)でご用意しております。
厚みのある固定リングは非球面レンズ、短焦点距離の 平凸レンズ、 コンデンサーレンズなど、曲率が高い光学素子の取り付けに使用します。右の動画のように通常の固定リングを曲率が高い光学素子に使用した場合、スパナレンチのガイドフランジが光学素子の表面に接触し、光学素子を傷つける可能性があります。また、スパナレンチと固定リングの間に隙間ができるため、固定リングが正しく締め付けられません。厚みのある固定リングは、スパナレンチが光学素子の表面に接触することなくレンズを固定させることができます。
Posted Comments: | |
bongju kim
 (posted 2023-05-12 19:11:24.9) la1461-a does not have the damaged threshold information for the cw laser. Is there any way to know? Also use 10w 450nm diode laser and whether cooling treatment is required. jpolaris
 (posted 2023-05-12 07:03:04.0) Hello, thank you for contacting Thorlabs. We have not yet tested LA1461-A for CW laser-induced damaged thresholds. Aside from wavelength and average power, CW damage thresholds are also dependent on the spot size incident on the lens. I have reached out to you directly to discuss the feasibility of using LA1461-A in your application. Michael Morgan
 (posted 2022-05-12 11:07:22.42) Is a La1353-A 60mm dia. lens available, with 365-370nm wavelength pass? cdolbashian
 (posted 2022-05-20 04:49:15.0) Thank you for contacting Thorlabs. The LA1353-A is available to use at 365-370nm wavelength. Custom optics can be requested by emailing your local tech support team (in your case, techsupport@thorlabs.com). We will reach out to you directly to discuss the special requirement for 60 mm diameter. michaloski
 (posted 2015-10-29 09:43:39.843) Can you provided any information on the A) wavefront error or B) the tolerance on the surface irregularity and homogeneity grade?
Thanks,
Paul
585-388-3444
michaloski@corning.com besembeson
 (posted 2015-11-04 02:13:55.0) Response from Bweh at Thorlabs USA: I will contact you via email with this information. jjurado
 (posted 2011-08-01 16:31:00.0) Response from Javier at Thorlabs to martin.dusek11: Thank you for contacting us. We can certainly provide a list of parts that might work for you. I will contact you directly with information about our laser diodes and optics. martin.dusek11
 (posted 2011-07-30 20:35:24.0) Sorry, power of diode should be 5 - 10 mW. martin.dusek11
 (posted 2011-07-30 17:24:28.0) Hi,
I would like to focus red laser diode (630 - 670 nm) to a spot of 20 um diameter (or smaller) from 30 - 60 mm distance. Please can you recommend me any of your products (laser diode + lenses) that will be able to do that.
Thank you, Martin niez2
 (posted 2011-03-17 14:41:20.0) Hi,
I want to know the reflectance ratio of the LA1951_A (AR coating) in 355nm.
thanks Thorlabs
 (posted 2010-11-01 18:01:47.0) Response from Javier at Thorlabs to bruce.tiemann: We do not show the performance of the AR coatings outside of their intended range on the web because the out-of-band reflectivity can vary from lot to lot, so we cannot guarantee a consistent reflectivity vs. wavelength performance for any of our lenses. We do not want to publish misleading information on the web. I will send you some graphs that you can use for reference. Moreover, you are certainly correct about the discrepancy between the internal transmittance and uncoated transmission graphs. We will correct this information shortly. bruce.tiemann
 (posted 2010-11-01 17:04:01.0) Two things. First, I second the request that you show the performance of coatings well outside their intended range. Why not show the performance of all the coatings over the entire range? Second, there is an inconsistency in your data. In "graphs" you show BK7s uncoated (external) transmission, and also BK7s internal transmission. Impossibly, at 2500 nm the internal transmission is little over 80%, but the uncoated transmission, including reflection losses, is above 90%. They cant both be correct.
Bruce daniel.fink
 (posted 2010-01-05 09:07:29.0) Dear Sir or Madame,
I would like to know, what the damage threshold of this coated lens is. I am using a 532nm Nd:Yag with a beam diameter of >3mm and a maximum energy of around 25mJ/pulse. Can I use the coated ones or shall I use uncoated ones?
Best regards,
Daniel Fink jens
 (posted 2009-05-12 10:21:39.0) A reply from Jens at Thorlabs: Keith, thanks for pointing out this inconsistency. Indeed all the lenses should show the status Exempt 13 which is the exemption of Lead and Cadmium in optical glass and fiber. We will correct the indicated status for these parts as soon as possible today. We have switched over to NBK7 material which is the RohS compliant Schott glass type. So we are at the moment in the process of changing over all lenses to the compliant type. If you need compliant lenses on short term we can check if they can be hand selected. Please let me know if that is of interest. koakes
 (posted 2009-05-12 05:29:51.0) Please can you tell my why some of your lenses are RoHS compliant and some not ("exempt")? Is it older stock that are not controlled versus new stock where you make sure the coatings are lead free etc ?
Will you be moving all lenses to comply?
Thanks
Keith Oakes
Elforlight Ltd apalmentieri
 (posted 2008-12-16 13:24:47.0) It would be great if we could show a few AR coating curves from different lots on the web. If the curves show the performance outside the range, 350-1600nm, that would be really great. Data on the performance of the coatings outside the specified ranges is a rather popular request and it would be great to show how much the %R from different lots may vary outside of the designated range. |





