非球面コンデンサーレンズ


  • Optimized for Illumination and Collimation
  • Lens Diameters from 10 to 75 mm
  • Numerical Apertures from 0.52 to 0.79
  • Available Uncoated or AR-Coated for 350-700 nm or
    650-1050 nm

ACL1210U

Ø12 mm, f = 10.5 mm

ACL1815U-A

Ø18 mm, f = 15 mm

ACL25416U-B

Ø1", f = 16.0 mm

ACL5040U

Ø50 mm, f = 40 mm

ACL7560U-A

Ø75 mm, f = 60 mm

Related Items


Please Wait
General Specificationsa
Design WavelengthVisible
Glass TypeB270 Optical Crown Glass
Wavelength RangeUncoated: 380 - 2100 nm
A: 350 - 700 nmb
B: 650 - 1050 nm
Reflectance Over AR Coating Range
for Coated Optics (Avg., AOI = 0°)
Ravg < 0.5%
Surface Quality80-50 Scratch-Dig
Uncoated Transmission Graph
(Click Here to Download Raw Data)
Icon
A Coating Reflectance Graph
(Click Here to Download Raw Data)
Icon
B Coating Reflectance Graph
(Click Here to Download Raw Data)
Icon
Diameter Tolerance+0.0 mm / -0.5 mm
Center Thickness Tolerance±0.3 mm
Centration< 30 arcmin
Maximum Temperature250 °C (482 °F)
  • 非球面の仕様については「非球面レンズの設計」タブをご覧ください。
  • このARコーティングの設計波長は350~700 nmですが、光学クラウンガラスB270は380 nm以下の波長で吸収を示します。
Zemaxファイル
下の型番横の赤いアイコンをクリックすると各製品のZemaxファイルをダウンロードできます。また、こちらからは当社の全てのZemaxファイルを一括してダウンロードできます。
Optic Cleaning Tutorial
Condenser Lens App Shot
Click to Enlarge

LEDM530L4からの530 nmの出射光は、非球面コンデンサーレンズACL5040U-Aによってすりガラス拡散板上に集光されています。次に、ビームはもう1枚のレンズACL5040U-Aによって粗くコリメートされています。拡散板表面にはLEDの四角いイメージが見えます。拡散板を通過したビームは均一になります。コンデンサーレンズは2枚とも自動芯出しレンズマウントSCL04(/M)に取り付けられています。

特長

  • 球面レンズよりも大きな口径と高いNAを有する非球面コンデンサーレンズ
  • 直径は10~75 mmの範囲で13種類の選択が可能
  • NA:0.52~0.79
  • 選択可能なARコーティング:無し、350~700 nm、650~1050 nm
  • 光学クラウンガラスB270製(380~2100 nm)

光の効率的利用

  • 集光
  • 投影
  • 検出

当社では、球面レンズに比べて大きな口径と高いNA(低いF値)を有する非球面コンデンサーレンズをご提供しています。これらのレンズは照明の高効率化のほか、ランプやLEDのような光源からの光をコリメートする用途などに適しています。コンデンサーレンズはカメラセンサ上にイメージを生成するようには設計されていませんし、そのような使い方も推奨されていません。そのような用途には、アクロマティック複レンズまたはトリプレットレンズ、あるいはチューブレンズをご使用ください。

当社では直径10~75 mmの範囲のコンデンサーレンズを取り揃えております。対応する波長範囲は、コーティング無しの場合は380~2100 nm、-Aコーティング付きの場合は350~700 nm、-Bコーティング付きの場合は650~1050 nmです。-Aコーティングは、350 nm~380 nmにおける基材の吸収特性を打ち消すことはできません。コーティング付きの場合の反射率曲線は、右の表のグラフアイコンをクリックしていただくとご覧になれます。

コンデンサーレンズは、球面レンズなどのレンズに比べて焦点距離が短くF値が低いため、レンズ間距離や他の素子との間隔を小さくできます。そのため、ディテクタ上に光の焦点を結ばせたり、他の集光要素に光を集めたりするのに適しています。 レンズの非球面側の面は高精度にモールド成形されており、平面あるいは球凸面側は研削加工および研磨加工がなされています。適切な性能を得るためには、レンズのフラットに近い面を光源に向けてください。注:基材のB270は380~2100 nmの光を透過しますが、これらのレンズは可視波長域用に設計されています。これ以外の波長における性能は、下記の表内にある各レンズの焦点シフトのグラフをご覧ください。

当社では、このレンズを取り付ける際に便利なSM05、SM1、SM2ネジ付きの厚型固定リングもご用意しています。これらを用いるとスパナレンチ用のクリアランスを確保できます。(詳細は「レンズ取付けガイド」タブをご参照ください)。

要求が厳しい用途には、CNC研磨された精密非球面レンズ(N-BK7S-LAH64UV溶融石英の各基材でご用意)をお勧めします。設計波長で回折限界の性能が得られます。当社では、平面側が研磨された拡散板になっている非球面コンデンサーレンズもご用意しております。ご用途に適したレンズの選び方についての詳細は、レンズのチュートリアルのページをご覧ください。

Lens Tutorial
Optical Coatings and Substrates

非球面レンズを設計するための式

Definitions of Variables
zSag (Surface Profile) as a Function of Y
YRadial Distance from Optical Axis
RRadius of Curvature
kConic Constant
Annth Order Aspheric Coefficient

これらのレンズの非球面は、光軸からの半径方向の距離Yについての多項式展開で表すことができます。表面プロファイルまたはサジッタ(簡略化してsag、サグとも呼ばれる)はzによって表され、下記の式で与えられます。

ここでRは曲率半径、kは円錐定数、Ann次の非球面係数です。Rの符号は、レンズ表面の曲率中心がレンズの頂点の右側か左側のどちらにあるかによって決まります。Rが正の面の曲率中心は頂点の右側に、Rが負の面の曲率中心は頂点の左側にあります。例えば、両凸レンズの左側の面の曲率半径は正に、右側にある曲率半径は負になります。

非球面レンズの係数

レンズ表面は回転対称であるため、上記の多項式展開にはYの偶数次項のみが含まれています。 各製品の非球面係数の目標値は、下の表または各製品の型番横にある赤いアイコン(docs)をクリックするとご覧いただけます。

Item #
Prefixa
ACL108UACL1210UACL12708UACL1512UACL1815UACL2018UACL2520UACL25416UACL3026UACL4532UACL5040UACL50832UACL7560U
S1: R (mm)4.1855.4924.7531246.2777.8189.41510.4628.81819713.55118.28120.92318.3225331.384
k-0.6027-0.6230-1.205071-0.6139-1.817-0.6392-0.6265-0.9991715-0.6301-1.0-0.6405-0.7980728-1.911
A42.21E-48.7E-55.3324183E-46.8E-5-2.93E-41.7E-51.5E-58.6821674E-55.5E-62.0E-62.0E-63.4036234E-65.0E-6
A6001.1162887E-500006.3760123E-80006.8362712E-90
A800-3.7455666E-700002.4073084E-9000-1.9656086E-110
A1000-7.6342017E-90000-1.7189021E-1100000
A12001.36022E-100000000000
S2b: R
(mm)
PlanoPlano-15.6494PlanoPlanoPlanoPlano-69.99948Plano130Plano-99.63679Plano
  • 目標値
  • S2はレンズの非球面側とは反対側の面を表します。

当社の固定リングはマウント無しの光学素子をレンズチューブまたは光学マウント内に固定します。リングの位置固定には対応するスパナレンチを使用します。平面光学素子や曲率が低い光学素子用には黒アルマイト製の固定リングをØ5 mm~Ø101.6 mm(Ø4インチ)まで標準品としてご用意しております。曲率が高い光学素子用には、厚みのある固定リングをØ12.7 mm(Ø1/2インチ)Ø25.4 mm(Ø1インチ)Ø50.8 mm(Ø2インチ)でご用意しております。

厚みのある固定リングは非球面レンズ、短焦点距離の平凸レンズコンデンサーレンズなど、曲率が高い光学素子の取り付けに使用します。右の動画のように通常の固定リングを曲率が高い光学素子に使用した場合、スパナレンチのガイドフランジが光学素子の表面に接触し、光学素子を傷つける可能性があります。また、スパナレンチと固定リングの間に隙間ができるため、固定リングが正しく締め付けられません。厚みのある固定リングは、スパナレンチが光学素子の表面に接触することなくレンズを固定させることができます。


Posted Comments:
Jaeheon Seol  (posted 2024-08-09 17:26:35.59)
Hello. I sent you an email because there was something in the product description that I did not understand. The product description says that for best performance, the flat side of the lens should be in contact with the source. I am curious as to why that is, and would it be okay if I politely asked why?
cdolbashian  (posted 2024-08-14 12:48:17.0)
In high-efficiency illumination application, the light source is usually a point source which produces spherical wave and we want to transform it into a plane wave for illumination. It needs spread the bending of the rays over more surfaces. When the flat side of the lens is in contact with the source, it can split the ray bending most evenly and minimize the introduction of spherical aberration. A best plane wave can be achieved in this way.
Jaeheon Seol  (posted 2024-05-01 14:04:00.283)
Hello. I would like to contact you because I have some questions about Aspheric lenses. About4th, 6th, 8th... order aspheric coefficient Some lenses only have the 4th, while others have everything from the 4th to the 12th. I'm curious what the difference is. Also, I understand that in the case of Aspheric lenses, the calculation of focal length follows the lens maker's formula. Is this correct? Thank you :)
cdolbashian  (posted 2024-05-10 03:41:41.0)
Thanks for contacting Thorlabs! In our catalog of aspheric condenser lenses, most of the lenses with high order aspheric coefficients have a curved second surface, which contains more spherical aberration. So higher orders are used to optimize the whole lens. On the other hand, we usually control the coefficient order as low as possible from the perspective of production and quality control. The lens maker's formula is only valid if the surfaces of the lens are spherical. Using the lens maker's formula to calculate the focal length of aspheric lenses will lead to inaccuracy.
user  (posted 2023-03-15 17:26:52.647)
What is the maximum power density of B270 that can be supported? Can a laser with a wavelength of 900-1000nm and a power density of 4000KW/cm² be used?
cdolbashian  (posted 2023-04-03 02:11:03.0)
Thank you for contacting Thorlabs! We'll reach out to you via email for some recommendations depending on your specific laser parameters.
Ernest Lee  (posted 2022-12-07 06:02:13.117)
We are looking into using this part in a production instrument. I'm looking for manufacturing tolerances (dimensional and aspheric shape). Thanks.
Hengyi Zhou  (posted 2022-11-17 12:34:39.783)
Hello sir/madam, I'm seeking professional advise on my optical design. I'm planning to use the aspheric lens (almost the largest N.A. to make the best use of light, phi = 1'', f = 16.0 mm) to collimate a green-color LED (516-540 nm), whose N.A. is close to unity. After that, a plano-convex lens will be used to focus this collimated light into the input of an optical fiber, and the output will be for other illumination use. In my understanding, to reduce the light loss inside the fiber, the angle of input light beam should not be large, i.e. the N.A. of this plano-convex lens should not be too large, so maybe a lens with phi = 1'', f = 100.0 mm will be ok? I'm not majored in optics, so I wonder if there's any unexpected issue in this design. I appreciate for your kind advise!
cdolbashian  (posted 2022-11-22 04:06:25.0)
Thank you for contacting Thorlabs. In this specific case, it can be seen as building a 4F system where the LED emitting area is the object, and focused beam is the image. For optimal coupling, typically the focused image size and focused beam NA need to be smaller than the fiber core diameter and NA, respectively. Due to the large emitting area of LEDs, it is not easy to focus the beam to a small enough size while meeting the NA requirements of the fiber. There is a trade-off between focusing lens NA and the focused beam diameter. It's hard to comment on this without knowing the fiber specs and light source specs. We will contact you directly to discuss your application in detail.
新莲 苗  (posted 2022-09-26 06:01:50.553)
聚焦镜反过来可以当准直镜用吗?
cdolbashian  (posted 2022-10-04 04:01:10.0)
Thank you for contacting Thorlabs. The Aspheric Condenser Lenses offer larger apertures, higher NA, and lower f/# ratios than spherical lenses. Therefore, these lenses are ideal for high-efficiency illumination applications or collimating light from a lamp, LED, or similar light source. 感谢您的留言。与球面透镜相比,非球面聚光透镜具有更大的孔径、更高的NA和更低的f/#比值。因此,这些非球面聚光透镜非常适合准直宽带光源、LED、或其它相似光源
amy ma  (posted 2021-07-15 20:03:37.997)
ACL2520U-A is ar-coated lens, could you tell me how to clean it if there is skin oils on it? May I use isopropanol with lens tissue to clean it? Or should I use other chemical to clean it? thank you
YLohia  (posted 2021-07-21 03:31:47.0)
Thank you for contacting Thorlabs. Yes, you can use isopropanol with a lens tissue to clean it. You may also use methanol or acetone. First, blow off as much dust and loose contaminants as possible using an air duster. Then, apply a couple of drops of Isopropanol to a lens tissue. Using a continuous, slow and circular motion, gently remove fingerprints or skin oils outward from the lens surface. For detailed cleaning procedures, you may refer to this link: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9025
qiang li  (posted 2021-06-08 17:28:58.137)
hello, I want to know why the price of Aspheric lens(material is B270)is much chiper than the CNC Aspheric lens? And if I want to customize the lens of B270, what is the price.
YLohia  (posted 2021-06-09 02:10:19.0)
Hello, there is a difference in the price due to the processing technology used for molded aspheres vs CNC polished aspheres. The molded aspheres, as the name implies, employ a molding process, while the CNC polishing process is more complicated. Unfortunately, we cannot customize the molded aspheres since redesigning the mold is quite expensive and is only suitable for extremely high volume production runs. B270 is not supported using the CNC machining process due to the high risk of cracking.
Hsiu Ting Wu  (posted 2020-04-30 02:56:38.7)
ACL12708U-B - Aspheric Condenser Lens Dear Does this product have parameters of damage threshold ?
YLohia  (posted 2020-04-30 10:01:24.0)
Hello, thank you for contacting Thorlabs. We have not established damage threshold for these yet but we may have some recommendations depending on your laser characteristics. We will follow-up with you.
roy.shiloh  (posted 2018-06-22 17:45:45.993)
Like the comment of barney.william, I'm trying to calculate the NA of these lenses, albeit by a different approach, which I believe should be accurate (at least for the plano-aspherical lenses): I take the sag formula: z=z(y), differentiate it by y: tan(alpha)=dz/dy, and then I expect to calculate: NA=sin(alpha). I plugged in the numbers you provide in your product table. Why don't I get the NA you present?
YLohia  (posted 2018-06-26 09:24:37.0)
Hello, thank you for contacting Thorlabs. Is there a particular lens you are looking at that yields a significantly different NA? In general, the equations provided by Tyler (tfrisch) in response to the comment by barney.william you mentioned (NA=D/(2f) or tan(NA)=D/(2f)) are fairly decent approximations. That being said, as Tyler said in his reply, these equations will not give you the most accurate NA due to the thickness of the lens, index of refraction, etc. All of the NAs listed on this page are simulated using the ray tracing software Zemax.
msamadi.52  (posted 2017-05-09 14:33:25.393)
Do you have the item ACL25416U-A with standard metric size (25 mm instead of 25.4 mm)? If not, what is your suggestion for mounting the lens?
nbayconich  (posted 2017-05-18 02:23:49.0)
Thank you for contacting Thorlabs. We recommend mounting our 25mm and Ø1" aspheric lenses in our SM1 threaded lens tubes prior to mounting into one of our SM1 threaded optical mounts. For example the ACL25416U-A can be mounted inside an SM1L05 and then mounted to an LMR1 fixed lens mount using our extra thick SM1RRC retaining rings. A techsupport representative will contact you directly for more information on quoting a Ø25mm version of the ACL25416U-A.
barney.william  (posted 2016-12-08 13:09:24.353)
What is the formula for calculating numerical aperture? I am using sin(atan(CA/2f)) where CA is clear aperture and f is the back focal length. That doesn't seem to give the same values listed on this page. Thanks in advance for the education! Bill
tfrisch  (posted 2016-12-15 01:35:10.0)
Hello, thank you for contacting Thorlabs. The short answer for why the NA does not match the usual models of NA=D/(2f) or tan(NA)=D/(2f) is that these condenser lenses are thick. By default modeling software often uses a paraxial ray trace, but in this case, a real ray trace is required for the most complete description of the NA. I will reach out to you with more details, but if you have access to Zemax, you can set a real ray trace using our provided models.
catalinavonb  (posted 2016-02-22 09:47:17.11)
Which mounting shoud be suitable for the ACL7560U condenser lens? thanks in advance for your answer!
besembeson  (posted 2016-03-04 01:43:10.0)
Response from Bweh at Thorlabs USA: You may consider the SCL04. Other options can be found at the following page depending on your application configuration. http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1488
carlos.jarrosanabria  (posted 2015-10-28 10:53:08.64)
What is the power rating for these lenses?
besembeson  (posted 2015-10-29 02:05:01.0)
Response from Bweh at Thorlabs USA: We have not established damage threshold for these yet but have some recommendations depending on your laser characteristics. I will follow-up with you.
user  (posted 2015-07-06 16:53:36.39)
My question is about the back focal length on the ACL25416U (and actually other lenses for which the face other than aspherical is non-plano). I am a bit confused because on the CAD drawing the BFL is noted with "(ref)" and on that same autoCAD pdf, "ref" refers to the edge thickness. So, is the back focal length (noted fb on your reference drawing) taken from the surface S2 (from the auto CAD drawing) or from the intersection of that surface S2 with the edge (edge thickness "te")?
besembeson  (posted 2015-09-22 09:46:44.0)
Response from Bweh at Thorlabs USA: The back focal plane reference will be from the S2 surface. A better reference drawing for this will be here: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4847
user  (posted 2014-07-18 11:08:32.2)
Which is the correct BFL of the ACL3026 lens? In the datasheet it is 19.3mm, but in the ZEMAX file it is 22.6mm.
myanakas  (posted 2014-08-07 08:48:37.0)
Response from Mike at Thorlabs: Thank you for your feedback. The back-focal length depends on the wavelength. Also in order to determine the correct value you should apply the “Marginal Ray Height” function. This is an optimization for calculating this distance correctly. You would just have to choose it from the pull down menu in the Thickness column. So instead of “V” for Variable please choose “M”. Then this distance is calculated correctly. It is about 19mm, depending on the wavelength. If you like to change the wavelength you can also do that by going into the “WAV” menu on the upper menu of the Zemax window.
jp  (posted 2014-05-27 10:36:08.48)
Is the focus length of a lens is wavelength dependent? If it is ,how is the relationship between them?
cdaly  (posted 2014-05-29 04:20:50.0)
Response from Chris at Thorlabs: Yes, the focal length is going to be dependent on the wavelength for any lens. For the ACL108, the shift should not be any more than 0.55mm over the full range(380-2100), but I will send you the curve generated from Zemax with more detailed information.
user  (posted 2014-03-25 13:37:47.407)
There seems to be an error with the prescription data and .zmx file for ACL3026- its modeled performance seems to be far less than other lenses in this category. Is the prescription data for ACL3026 accurate?
jlow  (posted 2014-03-27 11:44:08.0)
Response from Jeremy at Thorlabs: The prescription is accurate. The ACL line is not a high performance line and are mainly used for less-demanding application. I would recommend our precision CNC-polished aspheres if you require better performance.
james.parker  (posted 2014-02-04 14:10:19.02)
Are the zemax files available for the new ACLxxxxxU series of aspheric condenser lenses with the spherical second surface please? Is there a particular design intent or application for these lenses over the regular ACL series? Thank you.
jlow  (posted 2014-02-27 02:21:57.0)
Response from Jeremy at Thorlabs: We have made the Zemax file available for download following your feedback.
jlow  (posted 2012-08-02 13:01:00.0)
Response from Jeremy at Thorlabs: Using our M365L2 LED, the divergence would be about 2-3° or so (full angle).
Andreas.Buck  (posted 2012-07-31 03:34:24.0)
What degree of collimation is achieveable with the ACL5040? How big is the divergence using an LED like M365?
tcohen  (posted 2012-02-22 13:12:00.0)
Response from Tim at Thorlabs to kmurphy: Thank you for contacting us. I have emailed you the Zemax file. If you need any more information, please feel free to contact us.
kmurphy  (posted 2012-02-22 11:22:04.0)
I would also like the zemax files for these lenses, specifically for ACL1512. Thank you
user  (posted 2011-11-30 07:35:33.0)
A response from Tyler at Thorlabs: We will email you the zemax file immeadiately. Please let us know if you have any other needs.
mvirgen  (posted 2011-11-29 13:27:04.0)
I was wondering if i can get the zemax model for this. I have checked and updated the zemax catalog (from your website) and its not included. Thank you.
sharrell  (posted 2011-09-29 08:44:00.0)
A Response from Sean at Thorlabs to Andrew: Thank you for your feedback. We have added the B270 transmission curve, as well as a link to download the transmission data in an Excel spreadsheet. This may be found on the Graphs tab.
alee  (posted 2011-09-29 11:44:28.0)
could you put up the the transmission curves for these please, is the A coating suitable for use with one of your 385nm LED's? the A coating graph suggests it is but the substrate transmision is stated at 380, which sounds a little close to the edge. regards Andrew
jjurado  (posted 2011-08-31 17:43:00.0)
Response from Javier at Thorlabs to john.a.smith: The 4th order coefficient of the ACL2520 specified in the drawing is +1.5E-5. This information also agrees with the zmx model for this lens. I will contact you directly for further support.
john.a.smith  (posted 2011-08-29 18:34:21.0)
Specifications and coefficients for this aspheric lens dont seem consistent according to Zemax. Is the 4th order coefficient for the ACL2520 equal to -1.5e-5, not +1.5e-5? Thanks! John
Thorlabs  (posted 2010-12-01 15:42:32.0)
Response from Javier at Thorlabs to Edgar: I will work with our web team on updating this page with ZEMAX files for the aspheric condenser lenses. In the meantime, I will send you the zmx file for the ACL2520.
edgar.guevara  (posted 2010-11-30 18:09:24.0)
Can you post the full prescription data for ZEMAX, I think it would be very useful for all the users. I am trying to collimate the light from a LED, but I do not know if this aspheric (ACL2520) is enough.
Thorlabs  (posted 2010-10-11 14:06:22.0)
Response from Javier at Thorlabs to saxena.a: We would recommnend using the AL2520-A large diameter aspheric lens for this purpose. This lens, designed for diffraction-limited performance, has a better collection efficiency and better resolution than its ACL counterpart.
Thorlabs  (posted 2010-07-07 08:28:15.0)
Response from Javier at Thorlabs to mrubioroy: thank you for your reply. The easiest way to determine where the principal planes are for this lens is by ray tracing. For this purpose, it is important to know the wavelength(s) that you are working at, since Snells law needs to be applied, and we would need to know the index of refraction of the lens material at the operating wavelength. Also, beam diameter needs to be considered. I will contact you directly to work out all these details.
mrubioroy  (posted 2010-06-09 12:22:40.0)
Response to Javier: I guess my question should be: Can I know where the principal planes are?
Javier  (posted 2010-06-08 04:24:57.0)
Response from Javier at Thorlabs to mrubio: for a thin lens, the effective focal length can be considered as being measured from the center of the lens to the focal point. However, for a thick lens such as the ACL2520, the focal length is measured from one of the pricipal planes, which are basically defined as hypothetical planes were all the refraction is considered to happen. The thin lens equation can be used, but it disregards the distance between these planes. Gullstrands equation takes this distance into account, but the calculation process can get very involved. So, although the answer is not straightforward, you can consider the effective focal length as being measured a few millimiters from the convex surface of the lens. I will contact you directly in case you would like to discuss this further. Regarding your question about back focal length, you are correct; it is measured from the flat, or plano, side.
mrubio  (posted 2010-06-07 16:20:13.0)
From where is the EFL of 20mm on ACL2520 measured? Is the back focal distance measured from the flat side?
apalmentieri  (posted 2009-11-02 08:15:02.0)
A response from Adam at Thorlabs: I will send you all of the aspheric lens data that you will need.
dinesharakere  (posted 2009-11-02 03:36:18.0)
Sir, We had optimized our setup using AL108 and AL1210 combination for a Fluorescence detection (non-imaging application) setup. During websearch can find ACL108 and ACL 1210, which are much cheaper. Can I please have the aspheric lens prescription data - so that I can verify in Zemax that whether the alternate and cheaper substitute can meet the previous design performance.
klee  (posted 2009-10-12 14:08:37.0)
A response from Ken at Thorlabs: You are correct that the flat side should be facing the focus and the curved side should be facing collimation. We will correct this shortly.
thorlabs  (posted 2009-10-09 21:28:01.0)
Is the setup shown here correct? The Aspheric Condenser Lenses page shows two condenser lenses with curved faces toward each other. As I look at your picture, I see collimated light to the left and to the right of the pair (external to the pair) and light focused to a point between the pair. Normally the flat side of the lens faces toward focus and the curved side faces toward collimation.
apalmentieri  (posted 2009-08-14 16:15:04.0)
A response from Adam at Thorlabs: I understand your concerns and will send you all of the prescription information we currently can provide. I will also speak with our technical marketing department about adding this information to our website.
erik.foerster  (posted 2009-08-14 04:15:33.0)
For an optic designer it is imported to know the full description of the optical surfaces. Otherwise this product-information is really void.
Back to Top

非球面コンデンサーレンズ、コーティング無し

Item #Diameter
(mm)
Focal
Length
(mm)a
Focal Shift
(Raw Data)
f/#bClear
Aperture
(mm)
Back Focal
Length
(mm)
Numerical
Aperturec
Center
Thickness
(mm)
Edge
Thickness
(mm)
Non-Aspheric
Surface
Suggested
Lens Mounts
Reference
Drawing
ACL108U10.08.0
Focal Shift
0.89> 9.040.615.82.1PlanoLMR10(/M)Large-Diameter Aspheric Lens Drawing
ACL1210U12.010.5
Focal Shift
0.97> 10.870.545.81.9PlanoLH1(/M)
ACL12708U12.78.0
Focal Shift
0.70> 11.43.70.787.51.6Spherical ConvexLMR05(/M)
ACL1512U15.012.0
Focal Shift
0.89> 13.570.618.02.4PlanoLMR15(/M)
ACL1815U18.015.0
Focal Shift
0.93> 16.2100.578.22.0PlanoLMR18(/M)
ACL2018U20.018.1
Focal Shift
1.01> 18.0130.528.01.8PlanoLMR20(/M)
ACL2520U25.020.1
Focal Shift
0.89> 22.5120.6012.02.8PlanoLH1(/M)
ACL25416U25.416.0
Focal Shift
0.70> 22.97.30.7914.01.2Spherical ConvexLMR1(/M)
ACL3026U30.026.0
Focal Shift
0.96> 27.0180.5511.92.1PlanoLMR30(/M)
ACL4532U45.032.1
Focal Shift
0.79> 40.5210.6018.52.2Spherical ConvexLMR45(/M)
ACL5040U50.040.0
Focal Shift
0.89> 45.0260.6021.02.6PlanoLH2(/M)
ACL50832U50.832.0
Focal Shift
0.70> 45.7170.7625.01.9Spherical ConvexLMR2(/M)
ACL7560U75.060.0
Focal Shift
0.89> 67.5400.6130.02.3PlanoLMR75(/M)
  • これらのレンズの焦点距離の公差は±8%です。これは製造上の公差で、波長に依存する焦点シフトによるものではありません。
  • レンズの焦点距離をその直径で割ることによって概算のF値(f/#)が求められます。
  • 開口数(NA)は、広がり角度の正弦値から算出されます。レンズは厚みがあるため、近軸近似では最外部の光線追跡はできません。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
ACL108U Support Documentation
ACL108UAspheric Condenser Lens, Ø10 mm, f=8 mm, NA=0.61, Uncoated
¥2,880
3-5 Weeks
ACL1210U Support Documentation
ACL1210UAspheric Condenser Lens, Ø12 mm, f=10.5 mm, NA=0.54, Uncoated
¥2,880
Today
ACL12708U Support Documentation
ACL12708UAspheric Condenser Lens, Ø1/2", f=8 mm, NA=0.78, Uncoated
¥2,751
Today
ACL1512U Support Documentation
ACL1512UAspheric Condenser Lens, Ø15 mm, f=12 mm, NA=0.61, Uncoated
¥2,702
3-5 Weeks
ACL1815U Support Documentation
ACL1815UAspheric Condenser Lens, Ø18 mm, f=15 mm, NA=0.57, Uncoated
¥2,702
3-5 Weeks
ACL2018U Support Documentation
ACL2018UAspheric Condenser Lens, Ø20 mm, f=18.1 mm, NA=0.52, Uncoated
¥2,702
3-5 Weeks
ACL2520U Support Documentation
ACL2520UAspheric Condenser Lens, Ø25 mm, f=20.1 mm, NA=0.60, Uncoated
¥2,944
Today
ACL25416U Support Documentation
ACL25416UAspheric Condenser Lens, Ø1", f=16 mm, NA=0.79, Uncoated
¥2,817
3-5 Weeks
ACL3026U Support Documentation
ACL3026UAspheric Condenser Lens, Ø30 mm, f=26 mm, NA=0.55, Uncoated
¥3,599
3-5 Weeks
ACL4532U Support Documentation
ACL4532UAspheric Condenser Lens, Ø45 mm, f=32.1 mm, NA=0.60, Uncoated
¥7,201
3-5 Weeks
ACL5040U Support Documentation
ACL5040UAspheric Condenser Lens, Ø50 mm, f=40 mm, NA=0.60, Uncoated
¥7,201
3-5 Weeks
ACL50832U Support Documentation
ACL50832UAspheric Condenser Lens, Ø2", f=32 mm, NA=0.76, Uncoated
¥6,875
3-5 Weeks
ACL7560U Support Documentation
ACL7560UAspheric Condenser Lens, Ø75 mm, f=60 mm, NA=0.61, Uncoated
¥8,991
3-5 Weeks
Back to Top

非球面コンデンサーレンズ、ARコーティング:350~700 nm

Item #Diameter
(mm)
Focal
Length
(mm)a
Focal Shift
(Raw Data)
f/#bClear
Aperture
(mm)
Back Focal
Length
(mm)
Numerical
Aperturec
Center
Thickness
(mm)
Edge
Thickness
(mm)
Non-Aspheric
Surface
Suggested
Lens Mounts
AR CoatingReference
Drawing
ACL108U-A10.08.0Focal Shift0.89> 9.040.615.82.1PlanoLMR10(/M)350 - 700 nm (Ravg < 0.5%)Large-Diameter Aspheric Lens Drawing
ACL1210U-A12.010.5Focal Shift0.97> 10.870.545.81.9PlanoLH1(/M)
ACL12708U-A12.78.0Focal Shift0.70> 11.43.70.787.51.6Spherical ConvexLMR05(/M)
ACL1512U-A15.012.0Focal Shift0.89> 13.570.618.02.4PlanoLMR15(/M)
ACL1815U-A18.015.0Focal Shift0.93> 16.2100.578.22.0PlanoLMR18(/M)
ACL2018U-A20.018.1Focal Shift1.01> 18.0130.528.01.8PlanoLMR20(/M)
ACL2520U-A25.020.1Focal Shift0.89> 22.5120.6012.02.8PlanoLH1(/M)
ACL25416U-A25.416.0Focal Shift0.70> 22.97.30.7914.01.2Spherical ConvexLMR1(/M)
ACL3026U-A30.026.0Focal Shift0.96> 27.0180.5511.92.1PlanoLMR30(/M)
ACL4532U-A45.032.1Focal Shift0.79> 40.5210.6018.52.2Spherical ConvexLMR45(/M)
ACL5040U-A50.040.0Focal Shift0.89> 45.0260.6021.02.6PlanoLH2(/M)
ACL50832U-A50.832.0Focal Shift0.70> 45.7170.7625.01.9Spherical ConvexLMR2(/M)
ACL7560U-A75.060.0Focal Shift0.89> 67.5400.6130.02.3PlanoLMR75(/M)
  • これらのレンズの焦点距離の公差は±8%です。これは製造上の公差で、波長に依存する焦点シフトによるものではありません。
  • レンズの焦点距離をその直径で割ることによって概算のF値(f/#)が求められます。
  • 開口数(NA)は、広がり角度の正弦値から算出されます。レンズは厚みがあるため、近軸近似では最外部の光線追跡はできません。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
ACL108U-A Support Documentation
ACL108U-AAspheric Condenser Lens, Ø10 mm, f=8 mm, NA=0.61, ARC: 350-700 nm
¥4,557
3-5 Weeks
ACL1210U-A Support Documentation
ACL1210U-AAspheric Condenser Lens, Ø12 mm, f=10.5 mm, NA=0.54, ARC: 350-700 nm
¥4,557
3-5 Weeks
ACL12708U-A Support Documentation
ACL12708U-AAspheric Condenser Lens, Ø1/2", f=8 mm, NA=0.78, ARC: 350-700 nm
¥4,352
Today
ACL1512U-A Support Documentation
ACL1512U-AAspheric Condenser Lens, Ø15 mm, f=12 mm, NA=0.61, ARC: 350-700 nm
¥4,352
Today
ACL1815U-A Support Documentation
ACL1815U-AAspheric Condenser Lens, Ø18 mm, f=15 mm, NA=0.57, ARC: 350-700 nm
¥4,352
Today
ACL2018U-A Support Documentation
ACL2018U-AAspheric Condenser Lens, Ø20 mm, f=18.1 mm, NA=0.52, ARC: 350-700 nm
¥4,352
3-5 Weeks
ACL2520U-A Support Documentation
ACL2520U-AAspheric Condenser Lens, Ø25 mm, f=20.1 mm, NA=0.60 ARC: 350-700 nm
¥4,637
Today
ACL25416U-A Support Documentation
ACL25416U-AAspheric Condenser Lens, Ø1", f=16 mm, NA=0.79, ARC: 350-700 nm
¥4,395
Today
ACL3026U-A Support Documentation
ACL3026U-AAspheric Condenser Lens, Ø30 mm, f=26 mm, NA=0.55, ARC: 350-700 nm
¥5,250
Today
ACL4532U-A Support Documentation
ACL4532U-AAspheric Condenser Lens, Ø45 mm, f=32.1 mm, NA=0.60, ARC: 350-700 nm
¥8,869
3-5 Weeks
ACL5040U-A Support Documentation
ACL5040U-AAspheric Condenser Lens, Ø50 mm, f=40 mm, NA=0.60, ARC: 350-700 nm
¥8,869
Today
ACL50832U-A Support Documentation
ACL50832U-AAspheric Condenser Lens, Ø2", f=32 mm, NA=0.76, ARC: 350-700 nm
¥8,423
Today
ACL7560U-A Support Documentation
ACL7560U-AAspheric Condenser Lens, Ø75 mm, f=60 mm, NA=0.61, ARC: 350-700 nm
¥10,659
3-5 Weeks
Back to Top

非球面コンデンサーレンズ、ARコーティング:650 ~1050 nm

Item #Diameter
(mm)
Focal
Length
(mm)a
Focal Shift
(Raw Data)
f/#bClear
Aperture
(mm)
Back Focal
Length
(mm)
Numerical
Aperturec
Center
Thickness
(mm)
Edge
Thickness
(mm)
Non-Aspheric
Surface
Suggested
Lens Mounts
AR
Coating
Reference
Drawing
ACL108U-B10.08.0Focal Shift0.89> 9.040.615.82.1PlanoLMR10(/M)650 - 1050 nm
(Ravg < 0.5%)
Large-Diameter Aspheric Lens Drawing
ACL1210U-B12.010.5Focal Shift0.97> 10.870.545.81.9PlanoLH1(/M)
ACL12708U-B12.78.0Focal Shift0.70> 11.43.70.787.51.6Spherical ConvexLMR05(/M)
ACL1512U-B15.012.0Focal Shift0.89> 13.570.618.02.4PlanoLMR15(/M)
ACL1815U-B18.015.0Focal Shift0.93> 16.2100.578.22.0PlanoLMR18(/M)
ACL2018U-B20.018.1Focal Shift1.01> 18.0130.528.01.8PlanoLMR20(/M)
ACL2520U-B25.020.1Focal Shift0.89> 22.5120.6012.02.8PlanoLH1(/M)
ACL25416U-B25.416.0Focal Shift0.70> 22.97.30.7914.01.2Spherical ConvexLMR1(/M)
ACL3026U-B30.026.0Focal Shift0.96> 27.0180.5511.92.1PlanoLMR30(/M)
ACL4532U-B45.032.1Focal Shift0.79> 40.5210.6018.52.2Spherical ConvexLMR45(/M)
ACL5040U-B50.040.0Focal Shift0.89> 45.0260.6021.02.6PlanoLH2(/M)
ACL50832U-B50.832.0Focal Shift0.70> 45.7170.7625.01.9Spherical ConvexLMR2(/M)
ACL7560U-B75.060.0Focal Shift0.89> 67.5400.6130.02.3PlanoLMR75(/M)
  • これらのレンズの焦点距離の公差は±8%です。これは製造上の公差で、波長に依存する焦点シフトによるものではありません。
  • レンズの焦点距離をその直径で割ることによって概算のF値(f/#)が求められます。
  • 開口数(NA)は、広がり角度の正弦値から算出されます。レンズは厚みがあるため、近軸近似では最外部の光線追跡はできません。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
ACL108U-B Support Documentation
ACL108U-BAspheric Condenser Lens, Ø10 mm, f=8 mm, NA=0.61, ARC: 650-1050 nm
¥4,557
3-5 Weeks
ACL1210U-B Support Documentation
ACL1210U-BAspheric Condenser Lens, Ø12 mm, f=10.5 mm, NA=0.54, ARC: 650-1050 nm
¥4,557
3-5 Weeks
ACL12708U-B Support Documentation
ACL12708U-BAspheric Condenser Lens, Ø1/2", f=8 mm, NA=0.78, ARC: 650-1050 nm
¥4,352
Today
ACL1512U-B Support Documentation
ACL1512U-BAspheric Condenser Lens, Ø15 mm, f=12 mm, NA=0.61, ARC: 650-1050 nm
¥4,352
3-5 Weeks
ACL1815U-B Support Documentation
ACL1815U-BAspheric Condenser Lens, Ø18 mm, f=15 mm, NA=0.57, ARC: 650-1050 nm
¥4,352
3-5 Weeks
ACL2018U-B Support Documentation
ACL2018U-BAspheric Condenser Lens, Ø20 mm, f=18.1 mm, NA=0.52, ARC: 650-1050 nm
¥4,352
3-5 Weeks
ACL2520U-B Support Documentation
ACL2520U-BAspheric Condenser Lens, Ø25 mm, f=20.1 mm, NA=0.60, ARC: 650-1050 nm
¥4,637
3-5 Weeks
ACL25416U-B Support Documentation
ACL25416U-BAspheric Condenser Lens, Ø1", f=16 mm, NA=0.79, ARC: 650-1050 nm
¥4,395
3-5 Weeks
ACL3026U-B Support Documentation
ACL3026U-BAspheric Condenser Lens, Ø30 mm, f=26.0 mm, NA=0.55, ARC: 650-1050 nm
¥5,250
Today
ACL4532U-B Support Documentation
ACL4532U-BAspheric Condenser Lens, Ø45 mm, f=32.1 mm, NA=0.60, ARC: 650-1050 nm
¥8,869
Today
ACL5040U-B Support Documentation
ACL5040U-BAspheric Condenser Lens, Ø50 mm, f=40 mm, NA=0.60, ARC: 650-1050 nm
¥8,869
3-5 Weeks
ACL50832U-B Support Documentation
ACL50832U-BAspheric Condenser Lens, Ø2", f=32 mm, NA=0.76, ARC: 650-1050 nm
¥8,423
Today
ACL7560U-B Support Documentation
ACL7560U-BAspheric Condenser Lens, Ø75 mm, f=60 mm, NA=0.61, ARC: 650-1050 nm
¥10,659
3-5 Weeks