マウント付き平凸円形シリンドリカルレンズ、UV溶融石英(UVFS)


  • Used to Focus Light in One Dimension
  • Ø1" Housing with a >Ø21 mm Clear Aperture
  • Available Uncoated or with One of Four AR Coatings

LJ4395RM

LJ4709RM-A

LJ4667RM-C

LJ4147RM-B

Related Items


Please Wait
Common Specifications
MaterialUV Grade Fused Silicaa
Wavelength RangeUncoated: 185 nm - 2.1 µm
-UV Coated: 245 - 400 nm
-A Coated: 350 - 700 nm
-B Coated: 650 - 1050 nm
-C Coated: 1050 - 1700 nm
Broadband AR Coating ReflectivitybRavg < 0.5%
Design Wavelength587.6 nm
Diameter25.4 mm (1")
Diameter Tolerance+0.00/-0.10 mm
Clear Aperture> Ø21 mm
Focal Length Tolerance±1%
Surface Quality40-20 Scratch-Dig
Centration≤ 3 arcmin
Surface Flatness (Plano Side)λ/2c
Surface Power (Convex Side)d3λ/2c
Surface Irregularity (Convex Side)
(Peak to Valley)
λc
  • リンクをクリックすると基板の仕様がご覧になれます。
  • この仕様値は、コーティング付きレンズのみに適用されます(仕様波長の全範囲)。 コーティング無しのレンズの反射率は1面あたり約4%です。
  • λ = 633 nmにおいて
  • 平面光学素子に対する表面の平面度(Surface Flatness)と同様の指標で、曲率を有する光学素子の表面と校正された基準値との間の偏差の指標です(特に明記しない限りは、633 nmの光源を使用)。 この仕様は一般的に「Surface Fit」とも表記されます。
Zemaxファイル
下の型番横の赤いアイコン(資料)をクリックするとZemaxファイルをダウンロードいただけます。またこちらからは当社の全てのZemax ファイルの一括ダウンロードが可能です。

特長

  • 円形の形状なので、取付けや調整が簡単
  • 刻印付き黒色アルマイト加工アルミニウム製円形セルに取付け済み
  • 取付けセルと固定リングの間にぴったり密着
  • 光学素子はUV溶融石英(UVFS)ガラス製
  • 50.0 mm~1000.0 mmの焦点距離
  • SM1レンズチューブに対応 
  • 1次元方向のみに像の拡大が可能 
  • 半導体レーザをコリメートならびに円形化

このØ25.4 mm(Ø1インチ)の円形のシリンドリカルレンズは、当社のUV溶融石英(UVFS)平凸長方形シリンドリカルレンズと同様に、1次元方向のみに光を集光することができます。 さらにエポキシ樹脂によって円形セルに接着されているので、当社のSM1レンズチューブや、あらゆるØ25.4 mm(Ø1インチ)光学マウントに取付けることができます

UVグレード溶融石英は、深紫外域で優れた透過率を示し、レーザ誘起蛍光が実質見られないため(193 nmで測定)、UV域から近赤外域までの用途にお使いいただけます。 また、UV溶融石英(UVFS)は、N-BK7よりも高い均一性と低い熱膨張係数を備えています。

Optic Cleaning Tutorial

円形セルは黒色アルマイト加工されており、型番、焦点距離、コーティング情報(コーティング付きの場合)が刻印されています。 固定リングSM1RRを使用してレンズを保持する際、固定リングとシリンドリカルレンズがぴったり密着するよう設計されています。

用途の1つとして、このレンズを使ってガスセルから蛍光を集光し、光電子倍増管に細線を入射することができます。 また、シリンドリカルレンズをペアで使用することで、半導体レーザからの出射光をコリメートし、円形化することも可能です。 球面収差の影響を最小限に抑えるために、コリメートされた光を線上に集光する場合は曲面側から入射してください。また、光源からの光をコリメートする場合 には、線光源を平面側から入射する必要があります。

Plano-Convex Cylindrical Lens Selection Guide
SubstrateN-BK7UV Fused SilicaN-BK7
(Round)
UV Fused Silica (Round)
AR Coating
Range
Uncoated
350 - 700 nm
650 - 1050 nm
1050 - 1700 nm
Uncoated
245 - 400 nm
350 - 700 nm
650 - 1050 nm
1050 - 1700 nm
Uncoated
350 - 700 nm
650 - 1050 nm
1050 - 1700 nm
Uncoated
245 - 400 nm
350 - 700 nm
650 - 1050 nm
1050 - 1700 nm
Lens Tutorial
Optical Coatings and Substrates
Item #aFocal
Lengthb
Back Focal
Length
RadiusCenter
Thickness
Housing
Thickness
Working
Distanceb
Reference
Drawing
LJ4709RM50.0 mm45.9 mm22.9 mm6.0 mm8.3 mm44.6 mmMounted Plano-Convex Round Cylindrical Lens Drawing
LJ4878RM75.0 mm70.9 mm34.4 mm6.0 mm8.3 mm69.6 mm
LJ4395RM100.0 mm95.9 mm51.7 mm6.0 mm8.3 mm94.6 mm
LJ4643RM150.0 mm145.9 mm68.8 mm6.0 mm8.3 mm144.6 mm
LJ4667RM200.0 mm195.9 mm91.7 mm6.0 mm8.3 mm194.6 mm
LJ4281RM250.0 mm247.3 mm114.6 mm4.0 mm6.3 mm246.0 mm
LJ4572RM300.0 mm297.3 mm137.5 mm4.0 mm6.3 mm296.0 mm
LJ4377RM400.0. mm397.3 mm183.4 mm4.0 mm6.3 mm396.0 mm
LJ4147RM500.0 mm497.3 mm229.2 mm4.0 mm6.3 mm496.0 mm
LJ4530RM1000.0 mm997.3 mm458.5 mm4.0 mm6.3 mm996.0 mm
  • 全ての仕様は、コーティング無し、コーティング付き両方のレンズに適用されます。 コーティング付きのレンズの型番は、コーティング無しのレンズの型番の末尾に-UV、 -A、-B、-Cが付いています。
  • 焦点距離は全て設計波長(587.6 nm)での値です。 UV溶融石英(UVFS)の屈折率は波長に反比例するので、使用する光の波長が長くなると、レンズの焦点距離も長くなります。
Common Specifications
MaterialUV Fused Silica
Wavelength RangeUncoated: 185 nm - 2.1 µm
-UV Coated: 245 - 400 nm
-A Coated: 350 - 700 nm
-B Coated: 650 - 1050 nm
-C Coated: 1050 - 1700 nm
Broadband AR Coating ReflectivityaRavg < 0.5%
Design Wavelength587.6 nm
Diameter25.4 mm (1")
Diameter Tolerance+0.00/-0.10 mm
Clear Aperture> Ø21 mm
Focal Length Tolerance±1%
Surface Quality40-20 Scratch-Dig
Centration≤ 3 arcmin
Surface Flatness (Plano Side)λ/2b
Surface Power (Convex Side)c3λ/2b
Surface Irregularity (Convex Side)
(Peak to Valley)
λb
  • この仕様値は、コーティング付きレンズのみに適用されます(仕様波長の全範囲)。 コーティング無しのレンズの反射率は1面あたり約4%です。
  • λ = 633 nm
  • 球面指数(Spherical Surface Power)は、平面光学素子に対する表面の平坦度(Surface Flatness)と同様の指標で、曲率を有する光学素子の表面と校正された基準値との間の偏差の指標です(特に明記しない限りは、633 nmの光源を使用)。 この仕様は一般的に「Surface Fit」とも表記されます。
N-BK7 Transmittance
Click to Enlarge

生データはこちらからダウンロードいただけます。
A AR Coating
Click to Enlarge

生データはこちらからダウンロードいただけます。
青色の網掛け部分は、245~400 nmの推奨波長範囲を示しています。
A AR Coating
Click to Enlarge

生データはこちらからダウンロードいただけます。
青色の網掛け部分は、350~700 nmの推奨波長範囲を示しています。

B AR Coating
Click to Enlarge

生データはこちらからダウンロードいただけます。
青色の網掛け部分は、650~1050 nmの推奨波長範囲を示しています。

C AR Coating
Click to Enlarge

生データはこちらからダウンロードいただけます。
青色の網掛け部分は1050~1700 nmの推奨波長範囲を示しています。

Damage Threshold Specifications
Coating Designation
(Item # Suffix)
Damage Threshold
-UV5 J/cm2 (355 nm, 10 ns, 10 Hz, Ø0.350 mm)
-A7.5 J/cm2 at 532 nm, 10 ns, 10 Hz, Ø0.491 mm
-B0.246 J/cm2 at 800 nm, 99 fs, 1 kHz, Ø0.166 mm
7.5 J/cm2 at 810 nm, 10 ns, 10 Hz, Ø0.133 mm
-C7.5 J/cm2 at 1542 nm, 10 ns, 10 Hz, Ø0.189 mm

当社のUV溶融石英平凸レンズの損傷閾値データ

右の仕様は当社のARコーティング付き溶融石英平凸円形シリンドリカルレンズの測定データです。

 

レーザによる損傷閾値について

このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。

テスト方法

当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。

初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。

LIDT metallic mirror
上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。
LIDT BB1-E02
Example Test Data
Fluence# of Tested LocationsLocations with DamageLocations Without Damage
1.50 J/cm210010
1.75 J/cm210010
2.00 J/cm210010
2.25 J/cm21019
3.00 J/cm21019
5.00 J/cm21091

試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。

CWレーザと長パルスレーザ

光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。

パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。

Linear Power Density Scaling

線形パワー密度におけるLIDTに対するパルス長とスポットサイズ。長パルス~CWでは線形パワー密度はスポットサイズにかかわらず一定です。 このグラフの出典は[1]です。

Intensity Distribution

繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。

ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。

  1. レーザの波長
  2. ビーム径(1/e2)
  3. ビームのおおよその強度プロファイル(ガウシアン型など)
  4. レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)

ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。

ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。

次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。

CW Wavelength Scaling

この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。

パルスレーザ

先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。

パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。

Pulse Durationt < 10-9 s10-9 < t < 10-7 s10-7 < t < 10-4 st > 10-4 s
Damage MechanismAvalanche IonizationDielectric BreakdownDielectric Breakdown or ThermalThermal
Relevant Damage SpecificationNo Comparison (See Above)PulsedPulsed and CWCW

お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。

Energy Density Scaling

エネルギ密度におけるLIDTに対するパルス長&スポットサイズ。短パルスでは、エネルギ密度はスポットサイズにかかわらず一定です。このグラフの出典は[1]です。

  1. レーザの波長
  2. ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
  3. レーザのパルス幅
  4. パルスの繰返周波数(prf)
  5. 実際に使用するビーム径(1/e2 )
  6. ビームのおおよその強度プロファイル(ガウシアン型など)

ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。

次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。

Pulse Wavelength Scaling

 

波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。

ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。

次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。

Pulse Length Scaling

お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1998).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).

レーザーシステムが光学素子に損傷を引き起こすかどうか判断するプロセスを説明するために、レーザによって引き起こされる損傷閾値(LIDT)の計算例をいくつかご紹介します。同様の計算を実行したい場合には、右のボタンをクリックしてください。計算ができるスプレッドシートをダウンロードいただけます。ご使用の際には光学素子のLIDTの値と、レーザーシステムの関連パラメータを緑の枠内に入力してください。スプレッドシートでCWならびにパルスの線形パワー密度、ならびにパルスのエネルギ密度を計算できます。これらの値はスケーリング則に基づいて、光学素子のLIDTの調整スケール値を計算するのに用いられます。計算式はガウシアンビームのプロファイルを想定しているため、ほかのビーム形状(均一ビームなど)には補正係数を導入する必要があります。 LIDTのスケーリング則は経験則に基づいていますので、確度は保証されません。なお、光学素子やコーティングに吸収があると、スペクトル領域によってLIDTが著しく低くなる場合があります。LIDTはパルス幅が1ナノ秒(ns)未満の超短パルスには有効ではありません。

Intensity Distribution
ガウシアンビームの最大強度は均一ビームの約2倍です。

CWレーザの例
波長1319 nm、ビーム径(1/e2)10 mm、パワー0.5 Wのガウシアンビームを生成するCWレーザーシステム想定します。このビームの平均線形パワー密度は、全パワーをビーム径で単純に割ると0.5 W/cmとなります。

CW Wavelength Scaling

しかし、ガウシアンビームの最大パワー密度は均一ビームの約2倍です(右のグラフ参照)。従って、システムのより正確な最大線形パワー密度は1 W/cmとなります。

アクロマティック複レンズAC127-030-CのCW LIDTは、1550 nmでテストされて350 W/cmとされています。CWの損傷閾値は通常レーザ光源の波長に直接スケーリングするため、LIDTの調整値は以下のように求められます。

CW Wavelength Scaling

LIDTの調整値は350 W/cm x (1319 nm / 1550 nm) = 298 W/cmと得られ、計算したレーザーシステムのパワー密度よりも大幅に高いため、この複レンズをこの用途に使用しても安全です。

ナノ秒パルスレーザの例:パルス幅が異なる場合のスケーリング
出力が繰返し周波数10 Hz、波長355 nm、エネルギ1 J、パルス幅2 ns、ビーム径(1/e2)1.9 cmのガウシアンビームであるNd:YAGパルスレーザーシステムを想定します。各パルスの平均エネルギ密度は、パルスエネルギをビームの断面積で割って求めます。

Pulse Energy Density

上で説明したように、ガウシアンビームの最大エネルギ密度は平均エネルギ密度の約2倍です。よって、このビームの最大エネルギ密度は約0.7 J/cm2です。

このビームのエネルギ密度を、広帯域誘電体ミラーBB1-E01のLIDT 1 J/cm2、そしてNd:YAGレーザーラインミラーNB1-K08のLIDT 3.5 J/cm2と比較します。LIDTの値は両方とも、波長355 nm、パルス幅10 ns、繰返し周波数10 Hzのレーザで計測しました。従って、より短いパルス幅に対する調整を行う必要があります。 1つ前のタブで説明したようにナノ秒パルスシステムのLIDTは、パルス幅の平方根にスケーリングします:

Pulse Length Scaling

この調整係数により広帯域誘電体ミラーBB1-E01のLIDTは0.45 J/cm2に、Nd:YAGレーザーラインミラーのLIDTは1.6 J/cm2になり、これらをビームの最大エネルギ密度0.7 J/cm2と比較します。広帯域ミラーはレーザによって損傷を受ける可能性があり、より特化されたレーザーラインミラーがこのシステムには適していることが分かります。

ナノ秒パルスレーザの例:波長が異なる場合のスケーリング
波長1064 nm、繰返し周波数2.5 Hz、パルスエネルギ100 mJ、パルス幅10 ns、ビーム径(1/e2)16 mmのレーザ光を、NDフィルタで減衰させるようなパルスレーザーシステムを想定します。これらの数値からガウシアン出力における最大エネルギ密度は0.1 J/cm2になります。Ø25 mm、OD 1.0の反射型NDフィルタ NDUV10Aの損傷閾値は355 nm、10 nsのパルスにおいて0.05 J/cm2で、同様の吸収型フィルタ NE10Aの損傷閾値は532 nm、10 nsのパルスにおいて10 J/cm2です。1つ前のタブで説明したように光学素子のLIDTは、ナノ秒パルス領域では波長の平方根にスケーリングします。

Pulse Wavelength Scaling

スケーリングによりLIDTの調整値は反射型フィルタでは0.08 J/cm2、吸収型フィルタでは14 J/cm2となります。このケースでは吸収型フィルタが光学損傷を防ぐには適した選択肢となります。

マイクロ秒パルスレーザの例
パルス幅1 µs、パルスエネルギ150 µJ、繰返し周波数50 kHzで、結果的にデューティーサイクルが5%になるレーザーシステムについて考えてみます。このシステムはCWとパルスレーザの間の領域にあり、どちらのメカニズムでも光学素子に損傷を招く可能性があります。レーザーシステムの安全な動作のためにはCWとパルス両方のLIDTをレーザーシステムの特性と比較する必要があります。

この比較的長いパルス幅のレーザが、波長980 nm、ビーム径(1/e2)12.7 mmのガウシアンビームであった場合、線形パワー密度は5.9 W/cm、1パルスのエネルギ密度は1.2 x 10-4 J/cm2となります。これをポリマーゼロオーダ1/4波長板WPQ10E-980のLIDTと比較してみます。CW放射に対するLIDTは810 nmで5 W/cm、10 nsパルスのLIDTは810 nmで5 J/cm2です。前述同様、光学素子のCW LIDTはレーザ波長と線形にスケーリングするので、CWの調整値は980 nmで6 W/cmとなります。一方でパルスのLIDTはレーザ波長の平方根とパルス幅の平方根にスケーリングしますので、1 µsパルスの980 nmでの調整値は55 J/cm2です。光学素子のパルスのLIDTはパルスレーザのエネルギ密度よりはるかに大きいので、個々のパルスが波長板を損傷することはありません。しかしレーザの平均線形パワー密度が大きいため、高出力CWビームのように光学素子に熱的損傷を引き起こす可能性があります。

Beam Circularization Setup
Click to Enlarge

図1: 実験セットアップ上の黄色い四角で囲まれたエリアにビーム円形化システムを設置
Spatial Filter Setup
Click to Enlarge

図4: 空間フィルターシステム
Anamorphic Prism Pair Setup
Click to Enlarge

図3: アナモルフィックプリズムペアシステム
Cylindrical Lens Pair Setup
Click to Enlarge

図2: シリンドリカルレンズペアシステム

楕円ビームの円形化技術の比較 

端面発光型半導体レーザは、発光開口部の断面が長方形になっているため、楕円形のビームを出射します。開口部の短辺から出射されるビーム成分は、これに直交するビーム成分よりも大きな広がり角を有します。一方のビーム成分がもう一方よりも大きく拡散するため、ビームの形状は円形ではなく楕円形になります。

楕円形のビーム形状は、円形のビームよりも集光ビームのスポットサイズが大きいことで放射照度(面積あたりのパワー)が低くなってしまいます。楕円ビームを円形化する技術は複数ありますが、ここではシリンドリカルレンズアナモルフィックプリズムのペア空間フィルタを利用した3種類の方法で実験を行い性能を比較しています。 円形化されたビームの特性は、M2測定、波面測定、伝送パワー測定によって評価しました。

これらの円形化技術によって楕円形の入射ビームの真円度は向上しますが、それぞれの技術ごとに円形化やビーム品質および伝送パワーの特性が異なることを示しました。この「実験データ」タブ内に記載されている結果から、用途に必要な要件を満たした円形化技術を選択するべきである事がわかりました。

実験の設計とセットアップ

この実験セットアップは図1の写真で示されています。図2~4では温度制御された670 nm半導体レーザからの楕円コリメート光をそれぞれの円形化システムに入射させています。コリメートにより、広がり角は小さくなりますが、ビーム形状はレーザ出力時と変わりません。各システムは下記の光学系をベースに構成されています。

ビーム円形化システム(右写真参照)を黄色い四角で囲まれた空きスペースに1台ずつ設置しました。このようにすることでそれぞれの円形化技術を同じ実験条件で評価できるため、実験結果を直接比較することができます。この実験上の制約により取り付け方法も制約されるため、コンパクト化という点では最適化されていません。またアナモルフィックプリズムペアについても、より便利で光学的にも調整されたマウント済みの製品を使わずに、マウント無しの製品を用いています。

それぞれの円形化システムから出射されたビームの特性は、パワーメータ波面センサならびにM2システムを使用して測定を行い、評価されました。例示目的のため、実験セットアップの写真内、テーブルの右側に、これらの評価機器がすべて表示されていますが、評価は1種類ずつ行います。 パワーメータは、ビーム円形化システムが入射ビームの強度をどの位減衰させるのかを測定するために使用します。波面センサは、出射ビームの収差を測定するために使用します。M2システムは出力ビームのビーム品質(理想のガウシアンビームからの劣化具合)の測定に使用します。円形化システムはレーザービームの減衰もされず、収差も生じず、完全なガウシアンビームを出射することが理想的です。

端面発光型半導体レーザからの発光には非点隔差があるため、直交するビーム成分の変位した焦点をオーバーラップで望ましい形状が得られます。ここで調査している3種類の円形化技術のうち、シリンドリカルレンズペアのみが非点収差も補償することができます。直交するビーム成分の焦点間の変位はこれらすべての円形化技術で測定できます。シリンドリカルレンズペアの場合、構成を調整することでレーザービーム内の非点収差を最小限に抑えます。この非点収差は規格化しています。 

実験結果

実験結果を下の表にまとめています。緑色のセルは各カテゴリ内における最も良い結果を示しています。円形化の方法にはそれぞれの利点があります。用途に最適な円形化技術は、ビーム品質、伝送パワー、セットアップの制約に対するシステムの要件によって決まります。

空間フィルタは真円度とビーム品質を著しく向上させますが、ビームの伝送パワーは低くなります。シリンドリカルレンズペアは、伝送ビームを綺麗な円形にし、バランスの良い円形およびビーム品質を実現します。また、シリンドリカルレンズペアはビームの非点収差のほとんどを補償します。アナモルフィックプリズムペアによるビームの真円度はシリンドリカルレンズペアによる真円度と比較しても遜色ありません。シリンドリカルレンズと比較して、プリズムからの出力ビームのM2値は小さく、波面誤差は少なくなりますが、伝送パワーはやや低くなります。

MethodBeam Intensity ProfileCircularityaM2 ValuesRMS WavefrontTransmitted PowerNormalized 
Astigmatismb
Collimated Source Output
(No Circularization Technique)
Collimated
Click to Enlarge

Scale in Microns
0.36X Axis: 1.28
Y Axis: 1.63
0.17Not Applicable0.67
Cylindrical Lens PairCylindrical
Click to Enlarge

Scale in Microns
0.84X Axis: 1.90
Y Axis: 1.93
0.3091%0.06
Anamorphic Prism Pair
Anamorphic
Click to Enlarge

Scale in Microns
0.82X Axis: 1.60
Y Axis: 1.46
0.1680%1.25
Spatial FilterSpatial
Click to Enlarge

Scale in Microns
0.93X Axis: 1.05
Y Axis: 1.10
0.1034%0.36
  • 真円度(Circularity)=dminor/dmajor、ここでdminorとdmajorは対応する楕円(強度:1/e)の長径と短径を表し、真円度 = 1は完全な円形ビームを表します。
  • 規格化された非点収差(Normalized Astigmatism)はビームの2つの直交する成分のウェスト位置の差で、ウェストが小さい方のビーム成分のレイリ長で割った値です。 

円形化システムに使用されている部品は、同じ実験セットアップで全ての実験を行えるように選択されています。これにより、全ての円形化技術を直接比較することができます。ただし、円形化システムのセットアップを個別に最適化した方が性能は向上します。コリメートレンズおよびアナモルフィックプリズムペア用のマウントを使用すると、操作や実験システムへの取り付けが簡単に行えます。小型のマウントを使用して、それぞれのペア同士をより精密に設置して、実験結果を向上させることもできます。 また、焦点距離をカスタマイズした受注生産品のシリンドリカルレンズを使用して、シリンドリカルレンズペアの円形化システムの実験結果を向上させることもできます。ビームプロファイルソフトウェアのアルゴリズムを用いて、真円度の計算に使用するビーム半径を決定すると、全ての実験結果に影響を与えます。

追加情報

この実験で使用したコンポーネントの選択および構築方法についての情報は、下記のリンクをクリックしてご覧いただけます。


Posted Comments:
user  (posted 2022-10-06 09:01:35.9)
Do these elements have the marked position for the exact angular positioning? If so, what is the marking accuracy?
cdolbashian  (posted 2022-10-14 04:00:56.0)
Thank you for contacting Thorlabs. At current stage, these Round Cylindrical Lenses do not have the exact angular position marks. I have posted your request on our internal engineering forum for further consideration as a future product. Thanks for the idea.
wenzhel  (posted 2017-03-31 16:05:40.397)
The radius of LJ4395RM seems the same as LJ1567RM's. This might be wrong, so could you please tell me the right radius of LJ4395RM?
tfrisch  (posted 2017-03-31 04:21:52.0)
Hello, thank you for contacting Thorlabs. I will reach out to you about these N-BK7 and UVFS lens.
eleanor.morris  (posted 2016-09-16 13:30:52.61)
Is this product available with an anti-reflective UV coating (suitable for 248 nm light)? Also, which is the best product to mount these onto a post?
tfrisch  (posted 2016-09-16 04:08:02.0)
Hello, thank you for contacting Thorlabs. We are working on a quote for you.
acook  (posted 2016-02-25 10:26:59.257)
I see you have a good selection of UVFS plano-convex cylindrical lenses in round 1” mounts, LJ4xxxRM. Will you be making these with your –UV coating, for 245-400nm? I need a couple with AR at 266nm. I’d like to see your –UV coating include 266nm, a commonly used application for UVFS lenses, with Nd:YAG 4th harmonic and Ti:Sapphire 3rd harmonic both at this wavelength.
besembeson  (posted 2016-03-08 05:24:01.0)
Response from Bweh at Thorlabs USA: Thanks for your feedback. We have contacted you to provide that as a special for now. The UV coating wavelength range specification was recently updated from 290 - 370 nm to 245 - 400 nm. All optics in stock currently have a UV coating with a wavelength range of 245 - 400 nm. We are in the process of updating our documentation, and so some individual optics may still be presented with the old wavelength range on our website. So the current coating should work for 266 nm.
stefan.werzinger  (posted 2014-10-14 18:11:41.637)
Do you also offer the round cylindrical UVFS lenses with a UV-AR coating for 248 nm excimer laser?
jlow  (posted 2014-10-17 08:21:30.0)
Response from Jeremy at Thorlabs: This is not a standard item we carry but we can do this as a custom order. We will contact you directly about this.
Back to Top

平凸円形シリンドリカルレンズ、コーティング無し

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LJ4709RM Support Documentation
LJ4709RMf = 50.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥28,644
3-5 Weeks
LJ4878RM Support Documentation
LJ4878RMf = 75.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥29,945
3-5 Weeks
LJ4395RM Support Documentation
LJ4395RMf = 100.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥28,644
3-5 Weeks
LJ4643RM Support Documentation
LJ4643RMf = 150.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥28,644
3-5 Weeks
LJ4667RM Support Documentation
LJ4667RMf = 200.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥29,945
3-5 Weeks
LJ4281RM Support Documentation
LJ4281RMf = 250.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥31,247
3-5 Weeks
LJ4572RM Support Documentation
LJ4572RMf = 300.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥31,247
3-5 Weeks
LJ4377RM Support Documentation
LJ4377RMf = 400.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥31,247
3-5 Weeks
LJ4147RM Support Documentation
LJ4147RMf = 500.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥34,177
3-5 Weeks
LJ4530RM Support Documentation
LJ4530RMf = 1000.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens
¥34,177
3-5 Weeks
Back to Top

平凸円形シリンドリカルレンズ、ARコーティング:245~400 nm

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LJ4709RM-UV Support Documentation
LJ4709RM-UVf = 50.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥30,140
3-5 Weeks
LJ4878RM-UV Support Documentation
LJ4878RM-UVf = 75.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥30,140
3-5 Weeks
LJ4395RM-UV Support Documentation
LJ4395RM-UVf = 100.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥30,140
3-5 Weeks
LJ4643RM-UV Support Documentation
LJ4643RM-UVf = 150.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥30,140
3-5 Weeks
LJ4667RM-UV Support Documentation
LJ4667RM-UVf = 200.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥30,140
3-5 Weeks
LJ4281RM-UV Support Documentation
LJ4281RM-UVf = 250.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥32,880
3-5 Weeks
LJ4572RM-UV Support Documentation
LJ4572RM-UVf = 300.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥32,880
3-5 Weeks
LJ4377RM-UV Support Documentation
LJ4377RM-UVf = 400.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥32,880
3-5 Weeks
LJ4147RM-UV Support Documentation
LJ4147RM-UVf = 500.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥35,620
3-5 Weeks
LJ4530RM-UV Support Documentation
LJ4530RM-UVf = 1000.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 245 - 400 nm
¥35,620
3-5 Weeks
Back to Top

平凸円形シリンドリカルレンズ、ARコーティング:350~700 nm

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LJ4709RM-A Support Documentation
LJ4709RM-Af = 50.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥31,573
3-5 Weeks
LJ4878RM-A Support Documentation
LJ4878RM-Af = 75.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥33,038
3-5 Weeks
LJ4395RM-A Support Documentation
LJ4395RM-Af = 100.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥31,573
Today
LJ4643RM-A Support Documentation
LJ4643RM-Af = 150.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥31,573
3-5 Weeks
LJ4667RM-A Support Documentation
LJ4667RM-Af = 200.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥33,038
3-5 Weeks
LJ4281RM-A Support Documentation
LJ4281RM-Af = 250.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥34,503
3-5 Weeks
LJ4572RM-A Support Documentation
LJ4572RM-Af = 300.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥34,503
3-5 Weeks
LJ4377RM-A Support Documentation
LJ4377RM-Af = 400.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥34,503
3-5 Weeks
LJ4147RM-A Support Documentation
LJ4147RM-Af = 500.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥37,594
3-5 Weeks
LJ4530RM-A Support Documentation
LJ4530RM-Af = 1000.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 350 - 700 nm
¥37,594
Lead Time
Back to Top

平凸円形シリンドリカルレンズ、ARコーティング:650~1050 nm

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LJ4709RM-B Support Documentation
LJ4709RM-Bf = 50.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥31,573
3-5 Weeks
LJ4878RM-B Support Documentation
LJ4878RM-Bf = 75.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥33,038
3-5 Weeks
LJ4395RM-B Support Documentation
LJ4395RM-Bf = 100.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥31,573
3-5 Weeks
LJ4643RM-B Support Documentation
LJ4643RM-Bf = 150.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥31,573
3-5 Weeks
LJ4667RM-B Support Documentation
LJ4667RM-Bf = 200.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥33,038
3-5 Weeks
LJ4281RM-B Support Documentation
LJ4281RM-Bf = 250.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥34,503
3-5 Weeks
LJ4572RM-B Support Documentation
LJ4572RM-Bf = 300.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥34,503
3-5 Weeks
LJ4377RM-B Support Documentation
LJ4377RM-Bf = 400.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥34,503
3-5 Weeks
LJ4147RM-B Support Documentation
LJ4147RM-Bf = 500.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥37,594
Lead Time
LJ4530RM-B Support Documentation
LJ4530RM-Bf = 1000.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 650 - 1050 nm
¥37,594
3-5 Weeks
Back to Top

平凸円形シリンドリカルレンズ、ARコーティング:1050~1700 nm

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LJ4709RM-C Support Documentation
LJ4709RM-Cf = 50.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥32,548
3-5 Weeks
LJ4878RM-C Support Documentation
LJ4878RM-Cf = 75.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥34,014
3-5 Weeks
LJ4395RM-C Support Documentation
LJ4395RM-Cf = 100.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥32,548
3-5 Weeks
LJ4643RM-C Support Documentation
LJ4643RM-Cf = 150.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥32,548
3-5 Weeks
LJ4667RM-C Support Documentation
LJ4667RM-Cf = 200.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥34,014
3-5 Weeks
LJ4281RM-C Support Documentation
LJ4281RM-Cf = 250.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥35,479
3-5 Weeks
LJ4572RM-C Support Documentation
LJ4572RM-Cf = 300.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥35,479
3-5 Weeks
LJ4377RM-C Support Documentation
LJ4377RM-Cf = 400.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥35,479
3-5 Weeks
LJ4147RM-C Support Documentation
LJ4147RM-Cf = 500.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥38,570
3-5 Weeks
LJ4530RM-C Support Documentation
LJ4530RM-Cf = 1000.0 mm, Ø1", UVFS Mounted Plano-Convex Round Cyl Lens, ARC: 1050 - 1700 nm
¥38,570
3-5 Weeks