• Optical-Grade Plastic
  • Designed for 670 nm or 785 nm
  • Near-Diffraction-Limited Performance





A Laser Diode is Collimated Using a
CAY046 Plastic Aspheric Lens in an
SM1AD8 Adapter Mounted to an LDM21
Laser Diode Mount

Related Items

Please Wait
Molded Plastic Uncoated Aspheres
Click to Enlarge

こちらの製品はお得なパッケージもお選びいただけます。画像のようにカプセルに包装してお届けします。Optical Coatings and Substrates


  • 材質: 光学グレードのプラスチック
  • 外径:5.20 mm、6.28 mm、7.40 mm
  • 焦点距離:3.30~18.15 mm
  • 大量購入の場合は割引あり

このプラスチック製非球面レンズは、最新の成型テクノロジを利用した全プラスチック製で、コーティング無し、または400 nm~700 nm帯域の反射防止コーティングが施されています。 このPhilips製の光学素子は大量生産品でお買い求めいただきやすい価格となっており、標準的な非球面レンズとしての性能を有します。 非球面レンズの表面は、回折限界に到達する単色光のスポットサイズやコリメートを考慮し、球面収差を除去するよう設計されています。 当社の全てのプラスチック非球面レンズは個別にご購入いただけます。また、種類によっては25、50、100個入りのパッケージもご用意しております。 パッケージの場合、個別にご購入いただくよりもお得な価格でご提供しています。

半導体レーザーシステムにおいては、ビーム広がり角が大きいと収差補正はさらに難しくなります。 球面レンズを用いた場合、球面収差を生じさせないためには小さな角度でしか屈折させられないので、半導体レーザの出力光をコリメートするときには、しばしば複数のレンズが必要になります。 一方で、非球面レンズなら、単一のレンズで球面収差を引き起こさずにコリメートします。 光をコリメートするには、より大きな曲率半径の面(より平らな面)を光源に向けるよう、レンズの方向を定めなければなりません。



Item #CAY033CAY046CAW100CAX100CAW110CAX183
Effective Focal Length3.32 mm4.60 mm9.85 mm10.0 mm10.92 mm18.15 mm
Numerical Aperture0.400.400.1950.20.190.12
Clear ApertureØ2.70 mmØ3.7 mmØ3.4 / Ø3.9 mm
(S1 / S2)c
Ø4.1 mmØ4.1 mmØ4.3 mm
Working Distancea2.00 mm3.00 mm4.69 mm8.48 mm9.33 mm16.30 mm
Outer Diameter7.40 mm7.40 mm5.20 mm6.28 mm6.28 mm6.28 mm
Center Thickness2.70 mm2.70 mm2.52 mm1.25 mm-1.09 mm
Wavefront Error, On Axisb (RMS)0.040λ0.040λ0.040λ0.080λ0.040λ0.030λ
Wavefront Error, Totalb (RMS)0.065λ0.070λ0.050λ0.090λ0.055λ0.035λ
Surface Quality80-50 Scratch-Dig
MaterialAcrylicAcrylicCyclic Olefin CopolymerPolycarbonateCyclic Olefin CopolymerPolycarbonate
Design Wavelength785 nm670 nm785 nm670 nm670 nm670 nm
AR Coating Wavelength
(>95% Transmission)
785 nmNone
Laser Window Correction0.25 mm (N-BK7)0.25 mm (N-BK7)5 mm (N-SF11)0.25 mm (N-BK7)0.25 mm (N-BK7)0.25 mm (N-BK7)
Operating Temperature5 to 65 °C5 to 65 °C0 to 65 °C0 to 65 °C-10 to 75 °C-10 to 75 °C
Storage Temperature-25 to 70 °C-10 to 70 °C0 to 65 °C0 to 65 °C-25 to 100 °C-25 to 100 °C
  • 下の略図の方法で計測
  • 設計波長で測定
  • 下の略図内に表示
Aspheric Lens Sketch


Click to Enlarge

上の透過率曲線は、表面反射を含んだポリカーボネートの全透過率です。 当社のプラスチック非球面レンズCAX100、CAX183は、この材料から製造されています。

Click to Enlarge

上の透過率曲線は、表面反射を含んだアクリルの全透過率です。 当社のプラスチック非球面レンズCAY046は、この材料から製造されています。

Click to Enlarge

上の透過率曲線は、表面反射を含んだ環状オレフィンコポリマの全透過率です。 当社のプラスチック非球面レンズCAW100およびCAW110は、この材料から製造されています。


ここで I(r) は中心からの距離rをパラメータとしたビーム強度、 Io は光軸上の強度、ωI(r) が1/e2となるときの径を表します。レーザーコリメート光をシングルモードファイバに集光するためには、ビームウェスト(ビームの焦点)で1/e2 半径がそのファイバのモードフィールド径の半分の値と同じになる必要があります。 M2 = 1 のビームでは、下式で求められる焦点距離のレンズをお選びください:

ここで λは光の波長、Dはレンズへの入射ビームの径(1/e2)、そして ωo はウェストでのビーム半径となります。

Posted Comments:
fcouweleers  (posted 2016-11-08 13:06:35.227)
the OpticStudio description of this lens (available from the Philips lens catalogue in OpticStudio) does not match your description. more specifically: the working distance appears to be specified from the wrong plane. can you confirm this discrepancy?
tfrisch  (posted 2016-11-10 10:37:23.0)
Hello, I have contacted you directly to discuss the model and the various planes. It is important to define working distance as either the distance to the laser window that it would collimate or the distance to the focal point.
jlow  (posted 2012-10-02 11:45:00.0)
Response from Jeremy at Thorlabs: I will send you a transmission graph via e-mail for the polycarbonate material used in the plastic aspheric lenses.
benjamin.hoetzer  (posted 2012-10-02 13:54:07.0)
Hello, I am looking for a Plastic Aspheric Lens that can be used for light between 460 and 530 nm. Are there any products available? The lenses CAW100, CAW110 and CAX100 are said to be ok for 670 and for 785 nm, how much transmittance do they show for light between 460 and 530 nm? Thanks for your answer.
jjurado  (posted 2011-05-17 13:22:00.0)
Response from Javier at Thorlabs to John_B_Lee: Thank you very much for contacting us with your request. The effective focal length of a lens is generally measured from the principal plane (or planes) of the lens, which is a hypothetical plane, where all the light refraction is considered to happen. Consequently, it is more useful to use the back focal length (BFL) in practical applications. This is defined as the distance from the back surface of the lens to the focal point. For the CAY046, the BFL is 3.18 mm.
John_B_Lee  (posted 2011-05-16 14:44:23.0)
The CA specs show a diagram but the actual position of the efl is not clear. Exactly where is the Effective focal length measured from (specifically CAY046)?
tor  (posted 2011-01-10 16:12:54.0)
Response from Tor at Thorlabs to Roger: These lenses can be cleaned with a solution of green soap (available at a pharmacy) in water (several drops of soap per 100 cc of water is acceptable). The lenses would need to be rinsed off in water and then alcohol to aid in drying.
rogerj  (posted 2010-12-16 16:14:40.0)
Currently am using the CAY046 and having issues when they get dirty. Do you have any suggestions on how to clean them. I am afraid to use anything too strong that will damage them. Roger Johnson
apalmentieri  (posted 2009-12-22 13:33:52.0)
A response from Adam at Thorlabs: We are currently looking over the graphs to determine their validity. Based on some initial Zemax simulations for the off axis performance, we have been able to reproduce similar curves that exhibt the behavior represented in the current online graphs. It is our understanding that the longer focal length lenses will provide the better imaging performance. The longer focal length lenses typically exhibit less spherical aberrations since the angle between the chief ray and the optical axis is smaller. I would also like to point out that this is an aspheric lens and should not be compared to a basic lens design. Based on our initial Zemax simulations of the Tilt sensitivity, it does seem that the scaling should be tenth of a degree, not a full degree. Since these simulations are based heavily upon initial conditions, we are looking into this further and hope to update the web soon. I will email you with the simulated curves.
dschaack  (posted 2009-12-21 18:10:17.0)
Likely errors in the data for CAY033 and CAY046: I believe that the "On-axis Performance" and "Lens Tilt Sensitivity" curves have been reversed for these two lenses. I have tried to reverse-engineer the designs of these lenses from these performance curves and I find that I can do it if I reverse the curves, but not if I use the curves the way that you present them. Consider this: according to your curves, the longer focal length lens has much better imaging performance than does the shorter focal length lens. This is non-physical; it is always easier to provide a given level of performance with a shorter focal length lens (assuming the same basic design and focal ratio of the lenses). In addition to the curves being reversed, I believe that the tilt angle scale is incorrect. What you call the tilt angle in degrees is actually the tilt angle in _tenths_ of a degree. Consider it this way: if the tilt sensitivity were actually as low as you show it, then it would also be the case that the performance as a function of field radius would also be much better than you show it.
klee  (posted 2009-07-22 17:01:46.0)
A response from Ken at Thorlabs to hkww: The transmittance is >85% at 405nm.
hkww  (posted 2009-07-22 16:04:54.0)
Hi! I would like to use plastic aspheric lenses to focus light at 405nm. Please inform me about transmission coefficient for this wavelength. best regards, Vadim Kiyko.
jens  (posted 2009-06-11 08:22:19.0)
An answer from Jens at Thorlabs: the plastic material transmission is basically the same up to about 1100nm and down to about 450nm. You only have to take into account that performance with repsect to other parameters might be different than shown in the spec table since those values are based on the design wavelenght. Please let me know if you need additional information.
Mario.Stipcevic  (posted 2009-06-11 06:15:32.0)
Hi ! I have a question about CAY046. I would like to use this lens to focus light at 830nm. I am not interewsted in a very good focusing performance just whether this type of plastic is transparent at this wavelength. I see non data about the transmission coefficient versus wavelenght, can you help me? Best regards, Mario Stipcevic


+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
CAY033 Support Documentation
CAY033Plastic Aspheric Lens, Ø7.40 mm, f = 3.32 mm, 0.40 NA
Volume Pricing
5-8 Days
CAY046 Support Documentation
CAY046Plastic Aspheric Lens, Ø7.40 mm, f = 4.60 mm, 0.40 NA
Volume Pricing
CAW100 Support Documentation
CAW100Plastic Aspheric Lens, Ø5.20 mm, f = 9.85 mm, 0.195 NA
Volume Pricing
5-8 Days
CAX100 Support Documentation
CAX100Plastic Aspheric Lens, Ø6.28 mm, f = 10.0 mm 0.2 NA
Volume Pricing
CAW110 Support Documentation
CAW110Plastic Aspheric Lens, Ø6.28 mm, f = 10.92 mm, 0.19 NA
Volume Pricing
CAX183 Support Documentation
CAX183Plastic Aspheric Lens, Ø6.28 mm, f = 18.15 mm, 0.12 NA
Volume Pricing
5-8 Days


+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
CAY033-25 Support Documentation
CAY033-25Plastic Aspheric Lens, Ø7.40 mm, f = 3.32 mm, 0.40 NA, 25 Pack
5-8 Days
CAY046-25 Support Documentation
CAY046-25Plastic Aspheric Lens, Ø7.40 mm, f = 4.60 mm, 0.40 NA, 25 Pack
5-8 Days
CAX100-25 Support Documentation
CAX100-25Plastic Aspheric Lens, Ø6.28 mm, f = 10.0 mm, 0.2 NA, 25 Pack
5-8 Days
CAX183-25 Support Documentation
CAX183-25Plastic Aspheric Lens, Ø6.28 mm, f = 18.15 mm, 0.12 NA, 25 Pack
5-8 Days


+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
CAY046-50 Support Documentation
CAY046-50Plastic Aspheric Lens, Ø7.40 mm, f = 4.60 mm, 0.40 NA, 50 Pack
5-8 Days
CAX183-50 Support Documentation
CAX183-50Plastic Aspheric Lens, Ø6.28 mm, f = 18.15 mm, 0.12 NA, 50 Pack
5-8 Days


+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
CAY046-100 Support Documentation
CAY046-100Plastic Aspheric Lens, Ø7.40 mm, f = 4.60 mm, 0.40 NA, 100 Pack
CAX183-100 Support Documentation
CAX183-100Plastic Aspheric Lens, Ø6.28 mm, f = 18.15 mm, 0.12 NA, 100 Pack
5-8 Days