ピグテール付きフォトダイオード


  • High-Speed Photodiode, Coupling Lens, and Fiber
    in One Easy-to-Use Package
  • Si PIN Photodiode
  • Reinforced Fiber

Photodiode

FDSP Pigtailed
Photodiode

SM or MM Fiber

A Pigtailed Photodiode Soldered to the Circuit Board Inside
the INT-MZI-850 Fiber-Based Interferometer

Application Idea

Related Items


Please Wait
Mounted and Unmounted Detectors
Unmounted Photodiodes (200 - 2600 nm)
Calibrated Photodiodes (350 - 1800 nm)
Mounted Photodiodes (200 - 1800 nm)
Thermopile Detectors (0.2 - 15 µm)
Photovoltaic Detectors (2.0 - 10.6 µm)
Pigtailed Photodiodes (320 - 1000 nm)

特長

  • マルチモードバージョン:320~1000 nm
  • シングルモードバージョン:610~770 nmおよび780~970 nm
  • 高速信号検知が必要な用途に適した製品
  • 低バイアス電圧

このピグテール付きフォトダイオードは、可視域から近赤外域の範囲での光検出用に設計された高速シリコンPINフォトダイオードです。 これらのフォトダイオードはファイバ結合された光源からの連続光やパルス光の検知に特に適しており、光パワーを電流値に変換して測定を行います。 この製品はバイアス電圧が上昇しても低い暗電流と端子静電容量をもつため、光通信、高速測光、モニタリング用途での使用に適しています。

Pigtailed Photodiodes can be Connectorized on Request
Click to Enlarge

ピグテール付きフォトダイオードで、シングルモードファイバ使用のFC/PCコネクタ付き製品。ご要望に合わせてカスタム仕様の端末処理でこのピグテール付きフォトダイオードをご提供することも可能。

FDSPシリーズのピグテール付きフォトダイオードでは、シングルモードまたはマルチモードファイバがお選びいただけます。アクティブ結合で最適の結合効率、感度と安定性が達成できるようにアライメントされています。 FDSP625には、グレーデッドインデックスマルチモードファイバが使用されており、320~1000 nmの波長に対応します。 FDSP660とFDSP780には、モード干渉(MPI:マルチパス干渉)を抑制するシングルモードファイバが使用されています。この特長はファイバを 使った干渉計による信号検知には不可欠です。 これらの製品は後方反射が低くなる設計で、それぞれ610~770 nmおよび780~970 nmの波長に対応します。 ファイバと検知特性の詳細については下表の青いInfoアイコンをクリックしてご覧ください。

筐体はステンレススチール製ブッシュで、ファイバをフォトダイオードにアクティブ結合しています。 ファイバは、Ø900 µmのルースチューブ型の被覆とゴム製のブーツで補強されており、ファイバの曲げ応力を和らげます。

コネクタのカスタム仕様
これらのピグテール付きフォトダイオード向けに様々なファイバーコネクタ(シングルモード用およびマルチモード用)やファイバ用のコネクタ付けキットをご提供しています。 当社では業界標準のファイバーコネクタを使用した製品も特注でご提供可能です。 詳細は当社までお問い合わせください。 なお、この製品のフォトダイオードは未校正で、仕様はロット毎に多少のバラつきがございますのでご注意ください。 当社ではNISTトレーサブルの校正を実施した校正済みフォトダイオードもご提供しております。当社のフォトダイオードは、DCバイアスモジュールPBM42を使用して、高い光パワーの検出用に逆バイアス電圧を印加することも可能です。バイアス電圧やノイズフロアについての詳細は、「実験データ」タブをご参照ください。

Beamsplitter Split Ratios
Click to Enlarge

図 1. フォトダイオードの応答曲線。
飽和限界とノイズフロアの概要を表示。

フォトダイオードの飽和限界とノイズフロアの実験データ

ここでは当社のシリコンフォトダイオードの飽和限界とノイズフロアの測定結果をご紹介しています。フォトダイオードはすべて同じように機能しますが、フォトダイオードのノイズフロアと飽和限界はセンサ温度、抵抗率、逆バイアス電圧、応答特性、そしてシステムの帯域幅など多くのパラメータの影響を受けます。この実験ではシリコンフォトダイオード光検出システムにおける逆バイアス電圧と負荷抵抗の影響について調べました。逆バイアスの増加により飽和限界値は上がりましたが、ノイズフロアへの影響はわずかでした。負荷抵抗を小さくするとノイズフロアは測定システムのノイズレベルまで下がりましたが、飽和限界値も下がりました。これらの結果は逆バイアス電圧および負荷抵抗を選択する上で考慮すべき点を示しており、また、検出システムを構成する際にはすべての部品から生じるノイズを考慮すべきであることを示しています。

実験にはシリコンフォトダイオードFDS100を使用しました。光源には光パワーが0~50 mWのファイバーピグテール付き半導体レーザからのコリメート光を使用しています。コリメート光はまずビームスプリッタに入射しますが、大部分の光は透過して試験対象のフォトダイオードに入射するようにし、反射された残りの光は参照用のパワーセンサに入射しました。この状態で負荷抵抗と逆バイアス電圧を様々に変化させ、フォトダイオードの応答特性を評価しました。

右ならびに下のプロット図では、様々なテストに対する測定結果をまとめています。これらのグラフにより、様々な逆バイアス電圧ならびに負荷抵抗下でのフォトダイオードの線形応答性、ノイズフロア、そして飽和限界の変化がご覧いただけます。図1は5 Vの逆バイアス電圧ならびに10 kΩの負荷抵抗におけるフォトダイオードの応答特性です。出力電圧が逆バイアス電圧に近づくと、フォトダイオードの応答は上限値で飽和します。応答の下限値であるノイズフロアは、暗電流ならびに負荷抵抗の熱雑音(ジョンソンノイズ)によるものです。図2は、1 kΩの負荷抵抗のもとで逆バイアス電圧を様々に変えた時のフォトダイオード出力の測定結果をまとめています。逆バイアス電圧を(仕様値内で)増加させると飽和限界値が上がることを示しています。図3では5 Vの逆バイアス電圧のもとで様々に負荷抵抗値を変えたときのフォトダイオード出力電圧の測定結果です。負荷抵抗を増やすと、電圧応答の傾斜が急峻になることを示しています。図4では0 Vの逆バイアス電圧のもとで、負荷抵抗値を様々に変えたときのノイズフロアの測定結果をまとめています。負荷抵抗が大きくなるとノイズフロアも上昇します。なお、1 kΩのデータでは、測定システム内の電圧ノイズによりジョンソンノイズの理論値以上の値が測定されました。5 Vの逆バイアス電圧でのノイズフロアの変化は全体的に僅かでした。この実験に使用された装置や実験結果の詳細はこちらをクリックしてご覧ください。

Photodiode Response vs Bias
Click to Enlarge

図 2. 出力電圧の逆バイアス電圧依存性
Photodiode Noise Floor
Click to Enlarge

図 4. 様々な負荷抵抗におけるノイズフロア
Photodiode Response vs Load
Click to Enlarge

図 3. 様々な負荷抵抗における応答特性

フォトダイオードのチュートリアル

動作原理

接合型フォトダイオードは、通常の信号ダイオードと似た動作をする部品ですが、接合半導体の空乏層が光を吸収すると、光電流を生成する性質があります。フォトダイオードは、高速なリニアデバイスで、高い量子効率を達成し、様々な用途で利用することが可能です。

入射光の強度に応じた、出力電流レベルと受光感度を正確に把握することが必要とされます。図1は、接合型フォトダイオードのモデル図で、基本的な部品要素が図示されており、フォトダイオードの動作原理が説明されています。

 

Equation 1
Photodiode Circuit Diagram
図1:フォトダイオードの概略図 

フォトダイオード関連用語

受光感度
フォトダイオードの受光感度は、規定の波長における、生成光電流 (IPD)と入射光パワー(P)の比であると定義できます。

Equation 2

Photoconductiveモード(光導電モード)とPhotovoltaicモード(光起電力モード)
フォトダイオードは、Photoconductiveモード(逆バイアス) またはPhotovoltaicモード(ゼロバイアス)で動作できます。 モードの選択は、使用用途で求められる速度と、許容される暗電流(漏れ電流)の量で決まります。

Photoconductiveモード(光導電モード)
Photoconductiveモードでは、逆バイアスが印加されますが、これが当社のDETシリーズディテクタの基本です。回路で測定できる電流量はフォトダイオードに照射される光の量を反映します。つまり、測定される出力電流は、入射される光パワーに対しリニアに比例します。逆バイアスを印加すると、空乏層を広げて反応領域が広くなるため、接合容量が小さくなり、良好な線形応答が得られます。このような動作条件下では、暗電流が大きくなりがちですが、フォトダイオードの種類を選ぶことで、暗電流を低減することもできます。(注:当社のDETディテクタは逆バイアスで、順方向バイアスでは動作できません。)

Photovoltaicモード(光起電力モード)
Photovoltaicモードでは、フォトダイオードはゼロバイアスで使用されます。デバイスからの電流の流れが制限されると電位が上昇します。このモードでは光起電力効果が引き起こされますが、これが太陽電池の基本です。Photovoltaicモードでは、暗電流は小さくなります。

暗電流
暗電流とは、フォトダイオードにバイアス電圧が付加されている時に流れる漏れ電流です。Photoconductiveモードで使用する場合に暗電流の値は高くなりがちで、温度の影響も受けます。 暗電流は、温度が10°C上昇するごとに約2倍となり、シャント抵抗は6°C の上昇に伴い倍になります。高いバイアスを付加すれば、接合容量は小さくなりますが、暗電流の量は増大してしまいます。

暗電流の量はフォトダイオードの材料や検出部の寸法によっても左右されます。ゲルマニウム製のデバイスでは暗電流は高くなり、それと比較するとシリコン製のデバイスは一般的には低い暗電流となります。下表では、いくつかのフォトダイオードに使用される材料の暗電流の量と共に、速度、感度とコストを比較しています。

MaterialDark CurrentSpeedSpectral RangeCost
Silicon (Si)LowHigh SpeedVisible to NIRLow
Germanium (Ge)HighLow SpeedNIRLow
Gallium Phosphide (GaP)LowHigh SpeedUV to VisibleModerate
Indium Gallium Arsenide (InGaAs)LowHigh SpeedNIRModerate
Indium Arsenide Antimonide (InAsSb)HighLow SpeedNIR to MIRHigh
Extended Range Indium Gallium Arsenide (InGaAs)HighHigh SpeedNIRHigh
Mercury Cadmium Telluride (MCT, HgCdTe)HighLow SpeedNIR to MIRHigh

接合容量
接合容量(Cj)は、フォトダイオードの帯域幅と応答特性に大きな影響を与えるので、フォトダイオードの重要な特性となります。ダイオードの面積が大きいと、接合容量が大きくなり、電荷容量は大きくなります。逆バイアスの用途では、接合部の空乏層が大きくなるので、接合容量が小さくなり、応答速度が速くなります。

帯域幅と応答性
負荷抵抗とフォトディテクタの接合容量により帯域幅が制限されます。最善の周波数応答を得るには、50 Ωの終端装置を50 Ωの同軸ケーブルと併用します。接合容量(Cj)と負荷抵抗値(RLOAD)により、帯域幅(fBW)と立ち上がり時間応答(tr)の概算値が得られます。

Equation 3

 

雑音等価電力
雑音等価電力(NEP:Noise Equivalent Power)とは、出力帯域幅1 Hzでの信号対雑音比(SNR)が1になる入力信号のパワーです。NEPによって、ディテクタが低レベルの光を検知する能力を知ることができるので、この数値は便利です。一般には、NEPはディテクタの検出部の面積増加に伴って大きくなり、下記の数式で求めることができます。

Photoconductor NEP

この数式において、S/Nは信号対雑音比、Δf はノイズの帯域幅で、入射エネルギ単位はW/cm2となっています。詳細は、当社のホワイトペーパー「NEP – Noise Equivalent Power」をご覧ください。

終端抵抗
オシロスコープでの測定を可能にするためには、生成された光電流を電圧(VOUT)に変換する必要がありますが、負荷抵抗を用いて電圧変換します。

Equation 4

フォトダイオードの種類によっては、負荷抵抗が応答速度に影響を与える場合があります。最大帯域幅を得るには、50 Ωの同軸ケーブルを使用して、ケーブルの反対側の終端部で50 Ωの終端抵抗器の使用を推奨しています。このようにすることで、ケーブルの特性インピーダンスとマッチングできて共鳴が最小化できます。帯域幅が重要ではない特性の場合は、RLOADを増大させることで、所定の光レベルに対して電圧を大きくすることができます。終端部が不整合の場合、同軸ケーブルの長さが応答特性に対して大きな影響を与えます。したがってケーブルはできるだけ短くしておくことが推奨されます。

シャント抵抗
シャント抵抗は、ゼロバイアスフォトダイオード接合の抵抗を表します。理想的なフォトダイオードでは、シャント抵抗は無限大となりますが、実際の数値はフォトダイオードの材料の種類によって、10Ωのレベルから 数千MΩの範囲となる場合があります。例えばInGaAsディテクタのシャント抵抗は、10 MΩのレベルですが、GeディテクタはkΩのレベルです。このことは、フォトダイオードのノイズ電流に大きく影響を与える可能性があります。しかしながらほとんどの用途では、ある程度高い抵抗値であればその影響は小さく、無視できる程度です。

直列抵抗
直列抵抗は半導体材料の抵抗値で、この低い抵抗値は、通常は無視できる程度です。直列抵抗は、フォトダイオードの接触接続部とワイヤ接続部で発生し、ゼロバイアスの条件下でのフォトダイオードのリニアリティの主な決定要因になります。

一般的な動作回路

Reverse Biased DET Circuit
図2: 逆バイアス回路(DETシリーズディテクタ)

上図の回路はDETシリーズのディテクタをモデル化したものです。ディテクタは、入射光に対して線形の応答を得るために逆バイアス状態になっています。ここで生成された光電流の量は、入射光と波長に依存し、負荷抵抗を出力端子に接続すると、オシロスコープでモニタリングできます。RCフィルタの機能は、出力に雑音を載せてしまう可能性のある供給電力からの高周波雑音のフィルタリングです。

Amplified Detector Circuit
図3: 増幅ディテクタ回路

高利得用途でアンプとともにフォトディテクタを使用できます。動作時には、PhotovoltaicモードまたはPhotoconductiveモードのいずれも選択可能です。このアクティブ回路はいくつかの利点があります。

  • Photovoltaicモード:オペアンプで、点Aと点Bの電位が同じに維持されているので、フォトダイオードでは回路全体では0 Vに保たれています。このことで暗電流は発生しなくなります。
  • Photoconductiveモード: フォトダイオードは逆バイアス状態であるので、接合容量を低下させ、帯域幅の状態を改善します。ディテクタの利得は、フィードバック素子(Rf)に依存します。ディテクタの帯域幅は、下記の数式で計算することができます。

Equation 5

GBPが利得帯域幅積で、CDは接合容量と増幅器の静電容量の和です。

チョッパ入力周波数の影響

光導電信号は時定数の応答限界までは一定となりますが、PbS、 PbSe、HgCdTe (MCT)、InAsSbなどのディテクタにおいては、1/fゆらぎ(チョッパ入力周波数が大きいほどゆらぎは小さくなる)を持つため、低い周波数の入力の場合は影響が大きくなります。

低いチョッパ入力周波数の場合は、ディテクタの受光感度は小さくなります。周波数応答や検出性能は下記の条件の場合において最大となります。

Photoconductor Chopper Equation

パルスレーザ:パワーとエネルギーの計算

パルスレーザからの放射光が、使用するデバイスや用途に適合するかどうかを判断する上で、レーザの製造元から提供されていないパラメータを参照しなければならない場合があります。このような場合、一般には入手可能な情報から必要なパラメータを算出することが可能です。次のような場合を含めて、必要な結果を得るには、ピークパルスパワー、平均パワー、パルスエネルギ、その他の関連するパラメータを必要とすることがあります。

  • 生物試料を損傷させないように保護する
  • フォトディテクタなどのセンサにダメージを与えることなくパルスレーザ光を測定する
  • 物質内で蛍光や非線形効果を得るために励起を行う

パルスレーザ光のパラメータは下の図1および表に示します。参照用として、計算式の一覧を以下に示します。資料を ダウンロードしていただくと、これらの計算式のほかに、パルスレーザ光の概要、異なるパラメータ間の関係性、および計算式の適用例がご覧いただけます。

 

計算式

周期と繰り返し周波数は逆数の関係:   、 
平均パワーから算出するパルスエネルギ:      
パルスエネルギーから算出する平均パワー:       
パルスエネルギーから概算するピークパルスパワー:           

平均パワーから算出するピークパワー、ピークパワーから算出する平均パワー :
 
平均パワーおよびデューティーサイクルから算出するピークパワー*:
*デューティーサイクル() はレーザのパルス光が放射されている時間の割合です。
Pulsed Laser Emission Parameters
Click to Enlarge

図1: パルスレーザ光の特性を記述するためのパラメータを、上のグラフと下の表に示します。パルスエネルギ (E)は、パルス曲線の下側の黄色の領域の面積に対応します。このパルスエネルギは斜線で表された領域の面積とも一致します。

パラメータシンボル単位説明
パルスエネルギEジュール[J]レーザの1周期中に放射される1パルスの全放射エネルギ。
パルスエネルギはグラフの黄色の領域の面積に等しく、
これは斜線部分の面積とも一致します。
周期Δt 秒 [s] 1つのパルスの開始から次のパルスの開始までの時間
平均パワーPavgワット[W]パルスとして放射されたエネルギが、1周期にわたって
均一に広がっていたと仮定したときの、
光パワーの大きさ(光パワー軸上の高さ)
瞬時パワーPワット[W]特定の時点における光パワー
ピークパワーPpeakワット [W]レーザから出力される最大の瞬時パワー
パルス幅秒 [s]パルスの開始から終了までの時間。一般的にはパルス形状の
半値全幅(FWHM)を基準にしています。
パルス持続時間とも呼ばれます。
繰り返し周波数 frepヘルツ [Hz]パルス光が放射される頻度を周波数で表示した量。
周期とは逆数の関係です。

計算例

下記のパルスレーザ光を測定するのに、最大入力ピークパワーが75 mW 
のディテクタを使用するのは安全かどうかを計算してみます。

  • 平均パワー: 1 mW
  • 繰り返し周波数: 85 MHz
  • パルス幅: 10 fs

1パルスあたりのエネルギは、

と低いようですが、ピークパワーは、

となります。このピークパワーはディテクタの
最大入力ピークパワーよりも5桁ほど大きく、
従って、上記のパルスレーザ光を測定するのに
このディテクタを使用するのは安全ではありません


Posted Comments:
Pierrick Cheiney  (posted 2020-10-27 04:16:16.83)
Dear Sir/Madam, Could you give info on the typical polarization dependant losses ? Best regards, Pierrick Cheiney
dpossin  (posted 2020-10-28 06:24:04.0)
Dear Pierrick, Thank you for your feedback. Unfortunately we do not have data on the PDL.
michel lintz  (posted 2020-07-27 04:20:02.483)
Hi, You say these photodiodes (FDSP780 for instance) are designed for low back-reflection. But you do not give a number. Could you give a typical value? Thanks
dpossin  (posted 2020-07-28 08:59:46.0)
Dear Michael, Thank you for your feedback! Because the minimum detectable power depends on the wavelength you are using as well as the output voltage depends on the load resistance you apply in the circuit we can not really give numbers on that which are valid in general. Here are some considerations according to the detection limit for you: Using the NEP the minium output can be calculated by P_min=NEP_min*Res_max/Res(lambda)*sqrt(BW). The used symbols are: BW: electrical bandwidth P_min: minimum detectable optical power NEP_min: NEP at the responsivity maximum Res_max: responsivity maximum Res(lambda): responsivity at lambda Please also look up here: https://www.thorlabs.com/images/TabImages/Noise_Equivalent_Power_White_Paper.pdf for further information. Also the minium detectable power depend on the sensitivity of your scope. The output voltage can be assumed the following: V_out=(I_D+Res(lambda)*P_o)*R_L The used symbols are: V_out: output voltage I_D: dark current P_o: optical input power R_L: load resistance Please see here: https://www.thorlabs.com/images/TabImages/Photodetector_Lab.pdf for reference.
melanie Holmes  (posted 2020-05-18 14:46:24.82)
Is it possible to use these photodiodes with your benchtop photodiode amplifier ?
wskopalik  (posted 2020-05-25 04:24:27.0)
This is a response from Wolfgang at Thorlabs. Thank you very much for your inquiry! Yes, these photodiodes can also be used with the benchtop photodiode amplifier PDA200C. You would just need to make a custom cable to connect the photodiodes to the BNC input port of the amplifier. I will contact you directly to provide further assistance.
Roger Holten  (posted 2020-01-25 08:51:25.667)
It would be nice to see a version of this using an InGAs detector for better longer wavelength performance and flatter performance in the 1020-1080nm range
MKiess  (posted 2020-01-28 05:46:19.0)
This is a response from Michael at Thorlabs. Thank you very much for your inquiry. We have the possibility to manufacture Pigtailed InGAs photodiodes as custom versions. I have contacted you directly to discuss details.
CChang  (posted 2016-06-09 15:03:08.587)
Dear Thorlab I am looking for the pigtailed detector for 1590 nm. It is expected to have FC/PC connector, SMF-28 fiber and detector integrated into one piece. Do you have extra information or relevent vendor that you can forward it to me. Thank you very much. Chih-Hsuan Chang CChang@spectrasensors.com
besembeson  (posted 2016-06-09 03:17:58.0)
Response from Bweh at Thorlabs USA: I will contact you regarding this please.
c.kimsoon  (posted 2016-05-11 22:31:41.54)
Hi, my name is Kim Soon. I found this product is suitable for me in developing my prototype. However, those product do not have the specific wavelength that I required. May I know is it posibble to customize it? I need a wavelength between 500~530nm.Thanks.
shallwig  (posted 2016-05-12 04:28:00.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The FDSP625 is specified for 320-1000nm. I will contact you directly to discuss your application in detail.
eloktionov  (posted 2015-08-11 18:02:57.43)
Hello, Can't get any signal from FDSP625. Built a circuit for reverse bias as in tutorial. Connecting to 50 Ohm oscilloscope input (1mV/dev). Use 300mW@405 nm CW laser diode as a light source. Have checked contacts and bias voltage (+7 V) reaching pin 1. But still can't get any signal. Pinned respectively to DET10A internal board in parallel. Still no result. Am I missing something?
shallwig  (posted 2015-08-12 10:47:07.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. I have contacted you directly to troubleshoot this problem in detail.
Back to Top

ピグテール付きフォトダイオード

Item #InfoDetector TypeRise/Fall TimeaNEP
(WHz-1\2)
Dark CurrentTerminal
Capacitance
Wavelength
Range
FiberCore DiameterNACompatible
Sockets
FDSP625infoSilicon/PIN700 ps (Typical)3.1 x 10-150.01 nA Typ.
0.5 nA Max
3 pF320 - 1000 nmGraded-Index, Multimode62.5 µm0.27STO46S
STO46P
FDSP660info700 ps610 - 770 nmNufern 630-HP, Single Mode4 µm0.13
FDSP780info700 ps780 - 970 nmNufern 780-HP, Single Mode5 µm
  • RL = 50 Ω、VBias = 12 V
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FDSP625 Support Documentation
FDSP625Pigtailed Si Photodiode, GI MM Fiber, Ø62.5 µm Core, 320 - 1000 nm, No Connector
¥21,808
3 weeks
FDSP660 Support Documentation
FDSP660Pigtailed Si Photodiode, SM Fiber, 610 - 770 nm, No Connector
¥23,437
3 weeks
FDSP780 Support Documentation
FDSP780Pigtailed Si Photodiode, SM Fiber, 780 - 970 nm, No Connector
¥23,437
3 weeks