補償光学のチュートリアル


補償光学のチュートリアル


Please Wait
Related White Papers
Browse Our Selection of Adaptive Optics
補償光学製品はこちらからご覧いただけます。

補償光学(アダプティブオプティクス、AO)は、もともと天文学の分野で、伝搬する波面が地球の大気中を通ることによって引き起こされる像の揺らぎ取り除くために発展しました。当社では、AOテクノロジを使って、収差のない画像を得るための波面補正を行なっています。これには、可変形状ミラー(DM)ピエゾ素子型可変形状ミラー、CCDベースまたは高速CMOSベースのシャックハルトマン波面センサ、補償光学用キットなどを使用しています。

可変形状ミラー
当社のMulti-DMタイプの可変形状ミラーにより高度な光学制御を行うことができます。このミラーは自在な変形により、高度な波面歪み修正を行うことができます。MEMS型の可変形状方式は、その多様性や技術の完成度および高分解な波面補償能力のため、波面成形の用途で現在最も広く使われている技術です。

ピエゾ素子型可変形状ミラー
当社のピエゾ素子型可変形状ミラーも、高度な波面歪み修正にご使用いただけます。このタイプの可変形状ミラーは、非点収差やコマ収差など一般的に起こる波面収差による歪みの補正に適しており、あおり調整(チップ&チルト)用に別の機構も付いています。

シャックハルトマン波面センサ 
当社のシャックハルトマンセンサは、CMOSとCCDの2種類のセンサ種類でご用意しております。CMOSセンサは、最高1120 Hzのフレームレート(マイクロレンズアレイに依存)で、光ビームの波面形状や強度分布を正確に測定します。CCDカメラは当社の補償光学キットのみに付属します。カメラの解像度は1.3メガピクセルです。波面センサのマイクロレンズアレイは、高コントラストな300~1100 nm用のクロムマスク付き、または後方反射抑制を重視した400~900 nm用のARコーティング付きからお選びいただけます。クロムマスク付きマイクロレンズアレイのレンズピッチは150 µmで、ARコーティング付きのレンズピッチは150または300 µmとなります。3種類のタイプをご用意しているので、高空間分解能、高コントラスト、または高波面精度のシステムの構築が可能です。 

補償光学用キット
当社の補償光学(AO)キットには、可変形状ミラー、波面センサ、制御用ソフトウェア、そして組立て用に必要なオプトメカニクス部品が含まれ、補償光学イメージングソリューションとしてご提供しています。この精密波面制御デバイスは、ビーム成形、顕微鏡、レーザ通信、網膜イメージングの用途で使用されています。

はじめに
補償光学(AO)は、物理学、化学、電子技術、コンピューターサイエンスなど多くの専門分野に渡って急速に発展している分野です。補償光学システムは、光線の波面を補正(整形)するために用いられます。歴史的に、これらのシステムの始まりは、国際的な天文学と米国の防衛コミュニティにあります。この領域のルーツは、天文学の研究者達が大気乱流によって引き起こされる収差を補償することができれば、高い分解能の天文画像を得ることができると気が付いたことにあります。 研究者達にとっては、画像を鮮明にすれば、今までは見過ごされてきたような暗い対象物でも見つけることができるという利点がありました。天文学の研究者が大気乱流による画像のぼけの問題を解決しようしていた一方で、軍事産業の技術者は、高出力レーザからの光子を正確に1点に集中して、戦略ターゲットを破壊する技術を追究していました。さらに近年においては、AO構成部品が高性能でシンプルになったことで、研究者達はこのシステムをフェムト秒パルス整形、顕微鏡技術、レーザ通信、視力矯正や網膜観察の分野で応用しています。これらは大きく異なる分野ですが、時間変化による望まない影響を抑制するために、AOシステムが、いずれの分野でも役立っています。

標準的な補償光学システムは、(1)波面センサ(波面の歪を測定する)(2)可変形状ミラー(形を変えられる形状変更可能なミラーで、大きな歪のある波面を補正できる)(3)リアルタイム制御用ソフトウェア(波面センサが集めたデータに基づいて、歪んだ波面の補償に必要な可変形状ミラーの変形形状を計算します)の3つの部品から構成されます。これら3つの構成部品は、閉ループ方式で作動します。これは、AOシステムによるいかなる変化も、AOシステム自身が検知できることを意味しています。この閉ループシステムは、原理的には基本的にシンプルで、位相を対象となる光波面の位置の関数として測定し、収差を検知し、補正を計算して、可変形状ミラーを変形させて、補正結果を調べます。さらに、位相収差が時間と共に変化するようであれば、必要に応じてこのプロセスは何度も繰り返されます。この手順をふむことで、補償光学システムは、投影された光の波面から収差を取り除いて、光学分解能を向上させることができます。

波面センサ
補償光学システムにおける波面センサの役割は、実際の波面を参照波面と比較して、ズレを測定することです。波面検出には3つの基本的な方法があります。 シャックハルトマン型波面センサ、シヤリング干渉計と曲率センサです。雑音、精度、感度、そして制御用ソフトウェアや可変形状ミラーとのインターフェイスの相性など、方法によってそれぞれ利点があります。これらの中では、シャックハルトマン型波面センサが最も一般的に使用されています。

シャックハルトマン型波面センサは、マイクロレンズアレイを使って入射光を多数の小さなビームに分割します。分割後の各ビームは、マイクロレンズアレイの焦点面に位置決めされたCCDカメラ上に結像されます。均一な平面波がシャックハルトマン型波面センサに入射する時(図1参照)、焦点は各マイクロレンズの光軸上に位置することになり、焦点面上の等間隔のグリッド中に規則正しい点として並びます。しかし、歪みのある波面の場合(全ての平面ではない波面)、焦点は各マイクロレンズの光軸から外れて位置することになります。各点の中心からのズレは、各マイクロレンズの位置での波面の局所傾斜(ティルト)に比例します。したがって、波面位相は、測定して得られた点のズレの数値から(定数の範囲内で)再形成することができます(図2を参照)。

Wavefront correction

図1. 平面波がシャッ クハルトマン型波面センサのマイクロレンズアレイに入射する時、CCDセンサ上の結像スポットは、等間隔のグリッド中に規則正しい点として並びます。しかし、歪みのある波面の場合、各点は各マイクロレンズの光軸から外れて位置することになります。歪みが大きいと、結像スポットがグリッド内から外れるほどズレる場合があります。このデータで、マイクロレンズアレイに入射した波面形状を計算することが可能になります。

Screen Shots of Spotfield and Wavefront

2. 上の2つの図はそれぞれシャックハルトマン型波面センサを用いて取得した画面です。1つはスポットフィールド(左側)で、もう1つはこのスポット位置データを計算して得られた波面(右側)です。

Comparison of sensitivity and dynamic range

3. シャックハルトマン型波面センサにおいて、ダイナミックレンジと測定感度は競合する特性です。上記の数式では、fがマイクロレンズの焦点距離、 Δyがスポット変位、そして d がマイクロレンズの直径をあらわしています。測定感度θ min とダイナミックレンジθmax を表す数式は、小角度近似から得られます。θminは波面センサで測定可能な最小波面傾斜です。検出可能な最小のスポット変位がΔymin で表されており、これは、フォトディテクタのピクセルサイズ、重心アルゴリズムの精度やセンサの信号対雑音比などで決まります。θmax は最大波面傾斜ですが、波面センサで測定可能で、マイクロレンズ直径の半分に等しいΔymaxのスポット変位量に対応します。したがって、感度を上げるとダイナミックレンジが減少する、あるいはその逆となります。

シャックハルトマン型波面センサの性能に大きく影響を与える4つのパラメータは、マイクロレンズの数(または通常は約100 ~600 μm の範囲内のマイクロレンズの径)、ダイナミックレンジ、測定感度、そしてマイクロレンズアレイの焦点距離です(通常は数 mmから約30 mm)。マイクロレンズの数によって、ゼルニケ係数の最大数が決まります。ゼルニケ係数では、再構成アルゴリズムで確実に計算可能で、研究によれば元の波面を表すのに使用する係数の最大数は、おおよそマイクロレンズの数と一致します。必要となるマイクロレンズの数を決めるには、モデル化しようとしている歪みの量を考慮する必要があります(真の波面収差を効果的に表わすにはゼルニケ係数がいくつ必要か、など)。測定感度θmin とダイナミックレンジθmaxは、仕様において相反する因子です(図3を参照)。前者は、検出可能な最小位相を決定し、後者は測定可能な最大位相を決定します。

シャックハルトマン型センサの測定精度は、焦点スポットの参照位置に対する実際の位置の変位量を測定できる精度(測定の信頼性の高い最小波面傾斜など)に依存します。なお、この参照位置は、マイクロレンズの光軸上にあります。従来のアルゴリズムでは、スポット同士が部分的に重なってしまった場合やマイクロレンズの焦点スポットがセンサの検知領域外に位置してしまった場合(スポットクロスオーバ)は、スポットの正しい中心値は計算できませんでした。このような問題を克服するために、特別なアルゴリズムを適用することはできますが、その場合、センサのダイナミックレンジを制限することになります(信頼性をもって測定できる最大波面傾斜など)。システムのダイナミックレンジは、直径の大きなマイクロレンズか焦点距離の短いマイクロレンズを使用することで、大きくできます。しかし、マイクロレンズの直径は、必要なゼルニケ係数の数に左右されるので、ダイナミックレンジを増やす他の唯一の方法は、マイクロレンズの焦点距離を短くすることになります。ただし、この場合は測定感度が低下します。適切な選択は、必要とされるダイナミックレンジと測定感度に対応した最長の焦点距離をもったレンズを選ぶことです。

シャックハルトマン型波面センサを用いれば、計算した波面と同時に、強度分布の情報も得ることができます。この2つのデータは、混同しないように留意してください。図4の左側の図が強度分布のサンプルで、右側の図がそれに対応した波面プロファイルです。様々な波形の関数の分布から、同じ強度プロファイルが得られる場合があります。

Schematic of a sample intensity distribution and wavefront profile for the WFS

4. シャックハルトマン型波面センサでは、各マイクロレンズでのパワーや計算によって得られる波面分布など、いくつかの情報が得られます。上記の左の図はサンプルの強度分布で、右の図はそれに対応した波面です。

可変形状ミラー
可変形状ミラー(DM)は、シャックハルトマン型波面センサで測定された収差を補償するために出される位置コマンドに対応して、形状を変化させます(DMが補正できる収差については、「収差」のタブ内をご覧ください)。適切なのは、ミラーが収差プロファイル(図5参照)と対になる表面形状となることです。多くの場合、表面プロファイルは、印加電圧の入出力で動作するミラー表面下のアクチュエーターアレイによって制御されます。可変形状ミラーにはいろいろな方式がありますが、一般的なのは2種類で、セグメント型と連続型があります(図6を参照)。セグメント型ミラーは、独立したフラットなセグメントで構成されていて、上下に限定して動くタイプ(各セグメントが1つのアクチュエータで制御されている場合)と、あおり調整(チップ&チルト)、または上下運動をするタイプ(各セグメントが3つのアクチュエータで制御されている場合)があります。 これらのミラーは、通常ホログラフィや空間光変調器で使われています。この構成の長所としては、セグメントを厳密な精度要件に対応して製造できること、各セグメントが独立して動くので、隣接したセグメント同士のカプリングが起こらないこと、そしてセグメント毎に自由な角度で動く点などが挙げられます。一方で、セグメント間の均等なスペースは、回折パターンのような機能を果たすので、光線に回折モードの影響が出てしまいます。さらにセグメント型ミラーで歪んだ波面を補償する場合では、連続型ミラーより多くのアクチュエータが必要になります。セグメント型DMの光学的な問題を解決するために、連続的なフェイスプレート型のDMが製造されました(当社のAOキットに含まれているのはこの種類です)。この型の方が、セグメント型よりフィルファクタ(実際に反射するミラーの面積率)が高くなります。この型の難点は、アクチュエータが機械的にカプリングされていることで、1つのアクチュエータが動くとミラー表面全体にいくらかの影響が生じることです。1つのアクチュエータの位置を動かすことで、表面に形成される2次元の形状は、そのアクチュエータの影響関数と呼ばれています。連続型で隣接するアクチュエータの変位量は、通常、作動高さの10~20%で、この数値はアクチュエーターカプリングと呼ばれています。セグメント型DMではカプリングはゼロですが、これは必ずしも望ましい状態とは言えない点にご留意ください。

Wavefront reflection from a DM

5. フラットなミラーとMEMS可変形状ミラーの補償効果を図示しています。(a)収差のない波面がフラットなミラー表面に入射すると、反射後も波面には収差が生じません。(b) フラットなミラーでは、波面の変形を全く補正できないので、入射した光の収差が大きい場合、反射後も収差が生じた状態です。(c) MEMS可変形状ミラーは収差を補償するために表面を変形させることができます。DMは収差に対応した適切な形状に変化し、収差の大きい入射光の波面を補正できるので、反射後の光線には収差がありません。

segmented vs continuous mirrors

6.BMCの連続型(左)とセグメント型(右)のMEMS可変形状ミラーの断面図で、主な構成部品を図示しています。

特定の可変形状ミラー(DM)で修正できる波面範囲は、アクチュエータのストロークと分解能(アクチュエータの数と分布)、そしてDMに適した制御信号の決定に用いられるモデルで決定します。上記のはじめの2つの条件は、DM自体の物理的条件ですが、最後の条件は制御ソフトウェアに起因する条件です。アクチュエーターストロークは、DMアクチュエータのダイナミックレンジ(最大変位量)と言い換えられ、通常はμm単位で表記されます。アクチュエーターストロークが不適切な場合、性能が低下し、制御ループの収束を妨げる場合があります。 ミラー補正の自由度は、アクチュエータの数によって決まります。正方形、三角形、六角形等、様々なアクチュエーターアレイ形状が提唱されてきましたが、殆どのDMには正方形のアクチュエーターアレイが使われています。これは、直交直線座標上で位置決めが容易で、波面センサの正方形の検出アレイと対応させやすいからです。なお正方形のアレイを円形の開口部にあわせる為に、四隅のアクチュエータを取り外す場合があります。ほかの構成を用いれば、規定面積に対してさらに多い数のアクチュエータを配置することはできますが、製造工程が複雑になるので、通常はこのようなアクチュエータの追加は実施されません。

Cross-like pattern shown on DM

7. DMの表面上に十字型のパターンがあります。これはこのアレイの真ん中を上下に走る2列と左右に走る2列のアクチュエータ(計44個)を最大限にたわませるのに必要な電圧を印加してつくられました。 左側の画像は、AOキットソフトウェアの画面でDM表面を画像化したものです。一方で右側の画像は、準暗視野照明で得られたもので、前述の設定がプログラミングされた時の実際のDMの表面です。なお、写真の右下角にあるのは、照明用の白色光です。

図7(左の枠内)にあるのは、補償光学キットに含まれる可変形状ミラーの12 x 12のアクチュエーターアレイが形作っている十字形です。このような形になっているのは、ミラーメンブレン上に完全なたわみが生じるように、中央に位置している横2列、縦2列のアクチュエータに電圧が印加されているからです。DM表面を示すソフトウェアが生成した画像に加えて、同じプログラム条件で、準暗視野照明を使用して、実際の可変形状ミラー表面を撮影した写真が右側にあります(図7)。

制御用ソフトウェア:
補償光学の系では、制御ソフトウェアが波面センサと可変形状ミラーの間をつなぐ重要な役割を果たします。このソフトウェアは、波面傾斜に比例する波面センサの電子信号を補償電圧コマンドに変換して、DMの各アクチュエータに送ります。補償光学システムの閉ループの帯域幅は、計算実行の速度と精度に直結します。しかし、通常においては、これらの計算は収差の変化より短い時間で実行されなければなりません。

制御ソフトウェアは、基本的にはスポットフィールドの変位を利用して光線の位相を再構成し(この場合はゼルニケ多項式を用います)、それに対応したコマンドをDMに送出します。有効なゼルニケ多項式のデータを出力するために、最小二乗法による近似が適用されています。これが唯一の方法ではありませんが、ゼルニケ多項式は光線の位相を表現する便利な方法です。これらの多項式は、単位円上に焦点、ティルト、非点収差やコマ収差などを表す異なる光の直交基底を構成します。多項式は正規化されるので、各項の最大値(ピストンの項は除く)は+1、最小値は-1となり、表面全体の平均値は常にゼロとなります。また、2つの異なる収差が組み合わさって新しい収差が生じることは決してないので、存在する収差がどの種類であるかは常に明らかです。


Posted Comments:
No Comments Posted