Hello, I am looking for a fiber-coupled white-light LED with more output power than the 23.1 mW of the MWWHF2. Do you have something like that? Or would it be possible to use a multi-mode fiber with a core diameter > 400 µm to increase the power further? Thanks in advance and best regards.
MKiess
 (posted 2020-12-15 10:39:43.0)
Thank you very much for your inquiry.
If you use a fiber with a larger core diameter and a larger NA, this will lead to higher optical output powers at the fiber output. We recommend using multimode (MMF) fiber with the MWWHF2. Optical output power is specified for a Ø400 μm MMF with an NA of 0.39 at the maximum allowed LED current. Optical power increases proportionally with the core diameter and nearly proportionally to the square of the NA.
I have contacted you directly to discuss further details.
Hello,
We're located in Santa Clara, California and we're looking for OEM quantities of broadband unmounted SMT LEDs for embedded applications. We looked at your LEDSW50 but its spectral power distribution curve is too "wavy gravy". However, the LED used in your MBB1F1 appears to have a flatter and more uniform spectral curve.
So here's the question...would Thorlabs be willing to sell just the LED used in your MBB1F1? We'd be open to signing some sort of "non-compete" agreement, if required.
Sorry for the oddball question, and "no" would be a perfectly acceptable response, but we wanted to know either way.
Thanks and best regards!
MKiess
 (posted 2020-10-27 07:01:49.0)
Dear Naveen, thank you very much for your inquiry. The right LED for your application in this case is probably the MBB1D1. This broadband LED ranging from 470nm to 850nm and has a relatively flat spectral emission over this wavelength range. Furthermore, this is the pure LED on a metal core PCB.
I have contacted you directly to discuss further details.
John Keech
 (posted 2019-11-20 16:36:43.507)
What is the laser safety rating of LED fiber coupled sources? Are they safety rated in this way?
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=5206
Thank you,
John Keech
Corning Inc.
MKiess
 (posted 2019-11-22 10:32:04.0)
This is a response from Michael at Thorlabs. Thank you very much for the inquiry. These LEDs are classified in risk groups according to the International Standard "Photobiological Safety of Lamps and Lamp Systems" IEC 62471. This is different depending on the desired LED. The exact risk group of the individual LEDs can be found in the LED specification sheet, which can be downloaded on our webpage, in the Warnings and Safety section.
Hello!
Could you please let me know if the MCWHF2 can be powered by a 12V DC from a 280W power supply?
Have a nice day,
Marcin
swick
 (posted 2018-08-13 05:12:19.0)
This is a response from Sebastian at Thorlabs. Thank you for the inquiry.
Basically it is possible to drive our LEDs with constant voltage sources.
In order to drive the MCWHF2 with a constant voltage you need to limit the current to 1 Ampere. I contacted you directly to provide further assistance.
using the M780F2 780 nm, 5.5 mW (Min) Fiber-Coupled LED, with LEDD1Ba driver, what is the output power stability %rms? is it 5%rms variation or 10%rms output power variation
wskopalik
 (posted 2017-10-19 10:03:13.0)
This is a response from Wolfgang at Thorlabs. Thank you very much for your inquiry.
The driver LEDD1B is specified with a current ripple of 8mA. This ripple could also be seen in the light emission of the LED. The M780F2 has a max current of 800mA so this would correspond to 1% variation.
The LED itself will show a decrease in power during operation which would depend e.g. on the current and on the ambient temperature. This decrease is typically in the range of 3-5%. When the LED is switched on, there might also be some short term overshoots due to the driver or due to temperature changes. Other variations are not expected.
I will contact you directly to talk about your requirements in more detail.
fmor82
 (posted 2015-11-25 16:38:00.073)
To Whom It May Concern:
I am writing to ask you something about the cable used to power the LED (M385FP1).
I would like to know how many wires you have inside this cable.
Thank you in advance,
Flavio Mor.
shallwig
 (posted 2015-11-26 03:58:45.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. There are 4 wires inside the cable of our fiber coupled LEDs. In the “Pin Diagram” tab on the website you can find the pin assignment information : http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5206&pn=M385FP1#5262
The connector we use is a standard M8 x 1 sensor circular connector. I will contact you directly to check if you have any further questions.
user
 (posted 2015-09-01 15:52:41.237)
Yes, I understand that now the fiber which you use is 200 um and 0.22NA. The thing which I don't understand is that the coupled light is the same that with the other of 0.39NA. It is supposed that it would be less the coupled light with 0.22NA than 0.39NA, but you haven't change any value, so I'm a bit confused. I thought that with 0.22NA the coupled light will be 3.14 times less than with 0.39NA.
William
shallwig
 (posted 2015-09-02 02:11:40.0)
This is a response from Stefan at Thorlabs. Thank you again for your inquiry. The values from the website did not change since we never measured them with a 0.39NA fiber, they were always measured with a 200 µm core 0.22NA fiber. 0.39NA was a typo in the specs which we revised. Maybe we can discuss this by email. Since you left no contact data, could you please contact me at europe@thorlabs.com. Thank you.
user
 (posted 2015-09-01 13:32:41.34)
Hello,
Last month I started to see Thorlabs light sources, and to see their technical characteristics to make a purchasment for my univerity laboratory.
Today, I come back from holidays, and I see that some changes have taken place, you have change the fiber characteristics for fiber coupled light power.
Last month, they were a fiber of 400 um and 0.39 NA and other of 200 um and 0.39 NA, but today the 200 um fiber has 0.22NA.
I'm surprised that the light coupled power values doen't change in any case because I thought that it depends of fiber characteristics.
Since I know, the coupled light must be 3 times less in 0.22NA case compared with 0.39NA case.
William
shallwig
 (posted 2015-09-01 09:01:41.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The power values were always tested with a 200µm 0.22NA fiber (FG200UCC). The numerical aperture NA 0.39 was a typo which we removed.
Just noticed that the spec sheet for M617F1 says max 1000mA, but the DC2100 sets its max to 700mA when the M617F1 is plugged into it.
One or the other is wrong. One the plus side, the other is right (maybe.)
shallwig
 (posted 2015-07-16 07:01:23.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The maximum current which can be applied to this LED is as stated in the spec sheet 1000mA. In the manual of the DC2100 on page 14 http://www.thorlabs.com/thorcat/18300/DC2100-Manual.pdf it is described how the user Limit current can be changed. I guess you could not change this current to 1000mA for your M617F1. In this case there is most likely a wrong value written to the LEDs EPROM. I will contact you directly to troubleshoot this in more detail.
Hi, I was looking the M420F2 coupled light source to purchase it, because his great coupled power, 8.9 mW in 200um fiber. But then I read the datasheet, and I look that there puts that the minimun power coupled in a 400um fiber is also 8.9 mW... It is also strange that in others light sources usully the power coupled in 400un core fiber is 4 times bigger than in 200um(for example M365F1 200um:1mW and 400um:4.1 mW), but in 420nm case is less than 2(200um:8.9mW and 400um:16.2 mW).
So the question is, is really that the power coupled in 200um fiber is 8.9 mW??or is another value??
shallwig
 (posted 2015-03-20 06:54:48.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The specifications as stated on the website for these LEDs were measured and are correct so far. The assumption by increasing the core diameter and NA to increase the power proportionally does not take into account that each LED type has a different size and viewing angle (directional characteristic) which also influence the coupling efficiency.
All the numbers we provide on the web and in the datasheets are based on real measurements. We always treat the measurements quite conservative which means that we reduce the results typically by 10%. We measure up to 5 different LEDs with 5 different patch cords. Then we take the average and the minimum value and reduce it by 10% for our specs. By accident for this specific LED the minimum power with a 400µm fiber is nearly the same as the typical output power with a 200µm fiber.
The typical output power you can expect with a 200µm fiber is indeed 8.91mW. I will contact you directly to check if you need any further information.
andisetiono
 (posted 2015-02-25 03:13:43.507)
I want to know, Is power cable included to the product? thank you
tschalk
 (posted 2015-02-25 07:22:06.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. The power cable is attached to the fiber coupled LED. Please note that you need an additional LED controller to drive the unit. Therefore you can use a DC2100 or a LEDD1B.
user
 (posted 2014-02-03 17:09:20.777)
Hello, are these continuous wave sources?
tschalk
 (posted 2014-02-04 02:25:49.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. These LEDs are compatible with our LED drivers LEDD1B, DC2100 and DC4100 which can be found here: https://www.thorlabs.com/navigation.cfm?guide_id=2109. With all drivers the LEDs can be used as a continuous wave source. It is also possible to use the modulation input of each driver and to use the LEDs as a pulsed source. The DC2100 provides also Pulse Width Modulation Mode which can be used without an external Modulation source. Please contact me at europe@thorlabs.com if you have any further questions.
kcs32
 (posted 2013-12-19 11:42:49.89)
Hello,
I'm curious about the long power/EEPROM cable shown on the back of the fiber coupled LED. Is this cable permanently attached to the back of the device, or can it be removed? This is not obvious from the pictures and drawings I've seen.
Can to CON8ML-4 mating connector be plugged directly into the device instead of at the end of this cable? I'm thinking of using these LED's in a small volume, portable device, so minimizing the space taken up by the long cable would be very helpful. Thank you
tschalk
 (posted 2013-12-20 08:49:48.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. The cable is permanently attached to the LED so it can not be replaced by the CON8ML-4. We can offer you a device with a shorter cable and i will contact directly with more detailed information.
It seems that the M625F1 has a peak intensity actually at about 635 nm and the M617F1 has a peak at about 625 nm on the spectrum pop-up window. Is this correct? I would like an LED with peak intensity at 625 nm but am confused by the name of the LED and its stated peak light intensity. In other words, which LED actually delivers peak light intensity at 625 nm, the M617F1 or the M625F1?
Thanks
tschalk
 (posted 2013-11-25 06:47:50.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. For our visible LEDs the so called "dominant wavelength" is given and this specification takes the sensitivity of the human eye into account. The spectra provided on our homepage are correct and if you need a peak wavelength of 625nm the M617F1 would be the right choice.
Hi, what is the spectral power density [W/nm] of the MWWHF1 using a 400 µm core fiber?
tschalk
 (posted 2013-10-15 05:10:00.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. Unfortunately we can not provide the spectral power density of this light source. It is also depending on which fiber you are using. I will contact you directly to discuss your application.
jlow
 (posted 2012-09-26 09:52:00.0)
Response from Jeremy at Thorlabs: The 5.1mW is the typical output power when using a Ø400µm core fiber with 0.39 NA with 1000mA drive current. When a larger core fiber such as the M35L0x (Ø1000µm, 0.39NA) is used, the coupling efficiency from the LED to the fiber is increased, hence the 17.61mW min. power.
tpth
 (posted 2012-09-26 09:27:45.0)
Dear Sir:
I have a question:
Why the mininmum power 17.61mW (in a table)can be obtained when you use 530nm LED with a fiber M35L0x, though input power is 5.1mW?
I need a precise estimation of the amount of decrease in LED power during propagating in a fiber.
Please let me know the correct answer before my order.
Best regards.
Tsutomu Hoshimiya,
Prof. Tohoku Gakuin University
jvigroux
 (posted 2012-06-06 11:13:00.0)
A response from Julien at Thorlabs: Thank you for your inquiry! There will always be a trade-off to be found between fiber diameter and/or NA (ie. beam quality) and optical power coupled into the fiber. When using a fiber having a NA of 0.39, the focal length for the collimation lens to be used should be about 1mm. The beam quality that would however result from the combined effect of such a short focal length and the fiber diameter would lead to quite high divergence. In you case, I would recommend using a somewhat longer focal length for the collimation lens and subsequently a beam expander for the beam diameter reduction. I will contact you to discuss further the exact requirements of your setup to find what the most suited solution would be.
igkiou
 (posted 2012-06-06 04:37:26.0)
Hi, I am interested in creating a very collimated white beam of diameter < 0.8 mm. MCWHF1 provides enough output power when used with the fiber you used for your tests, a MM 400 um 0.39 NA fiber. What would you recommend using for collimation of the output of this combination? Would you recommend any of your prepackaged collimators? Thank you in advance for your assistance.
tcohen
 (posted 2012-05-14 09:18:00.0)
Response from Tim at Thorlabs: Thank you for your interest in our products. Our sales department will contact you to provide you with an official quote.
emlee1
 (posted 2012-05-13 12:32:44.0)
I am interested to purchase this product. Can you email me the quotation for this product and a suitable power supply for use in Singapore? Do include shipping to Singapore as well in your quote. Thanks.
jvigroux
 (posted 2012-02-06 13:00:00.0)
A response from Julien at Thorlabs: thank you for your inquiry! Unfortunately, as of now, there is no LED available with a high enough power in the wavelength range. I will ocntact you to know your exact requirement sin order to see which alternative there could be.
kforsyth
 (posted 2012-02-06 11:37:11.0)
Any plans for going shorter in wavelength soon, say to 250 - 300 nm?
jvigroux
 (posted 2011-12-15 10:17:00.0)
A response from Julien at Thorlabs: I just measured the coupled power in a 460HP fiber from a MCWHF1. The output power out of the fiber was around 50nW. In comparison, a 400µm 0.39NA fiber would yield an output power of around 7mW.
jvigroux
 (posted 2011-12-14 11:52:00.0)
A response from Julien at Thorlabs: thank you for your inquiry! We do not have the value yet but I will perform the measurement by tomorrow and let you know the obtained value.
doerr
 (posted 2011-12-14 17:22:01.0)
Hi,
I need a white light source coupled to a single-mode fiber. I've tried with regular halogen bulbs, but the output power is at least 10 times to low. The white light LED would be an option, even though the spectral distribution is not optimal. Can you give me any numbers what coupling efficiency or output power I can expect from a LED coupled to a single-mode fiber? Fiber type would be the same as with the 460HP patch cords.
jvigroux
 (posted 2011-08-29 12:21:00.0)
A response from Julien at Thorlabs: thank you for your feedback. We are in the process of measuring the power coupled into different standard fibers using the fiber coupled LEDs. Before publishing those values however, the tests have to be ran until the end and critically assessed. I will contact you directly per email in order to discuss with you the values that can be expected for your configuration.
rhs
 (posted 2011-08-22 12:50:51.0)
I miss some guidelines for choosing the optimal delivery fiber. Your measurement data has been obtained using a 400µm/0.4NA MM fiber, but that doesnt say much about the performance when using a different fiber.
It would be extremely helpful to have just two graphs showing the spatial distribution and the angular distribution of intensity at the coupling plane.
Thank you.
jjurado
 (posted 2011-08-05 09:30:00.0)
Response from Javier at Thorlabs to last poster: Thank you very much for your feedback!The mounts for these fiber-coupled LEDs have been designed to accept for M6 and 1/4" diameter screws. We will take a look at our current units to make sure that both screws fit and will make changes if it turns out that 1/4" screws are not compatible. Regarding the marking of the center wavelength, there is actually an identification label on the back side of the device with the part number of the LED, which calls out the center wavelength (with the exception of the MCWHF1 cold white LED). Please contact us at techsupport@thorlabs.com if you have any further questions or comments.
user
 (posted 2011-08-02 18:32:35.0)
The mounting slots are designed for M6 screws and dont pass 1/4" screws that are used in the USA.
It would also be nice to have the center wavelength engraved on the housing, either on the front surface, or on the top edge.
Light Emitting Diode (LED) Selection Guide
(Click Representative Photo to Enlarge; Not to Scale)