ファイバー出力型LED


  • UV, Visible, and NIR Versions
  • Optimized Heat Management Results in Stable Output
  • Integrated Chip Stores LED Operating Parameters
  • Accepts SMA Fiber Connector

M625F2

625 nm Fiber-Coupled LED

Ø400 µm Core Patch Cable
(Not Included)

Integrated Power Cable

Large Heat Sink for
Optimized Heat Dissipation

M385FP1

385 nm Fiber-Coupled LED

Related Items


Please Wait
Legend
LED Mounted to a 50 mm Long Heat SinkLED Mounted to a 34 mm Long Heat Sink
Item #Color
(Click for
Spectrum)a
Nominal
Wavelengtha,b
Ø200 µm Core
Fiber Output
(Typ.)c,d,e
Ø400 µm Core
Fiber Output
(Typ.)c,e,f
M280F5gDeep UV280 nm0.2 mW0.8 mW
M310F1gDeep UV308 nm0.14 mW0.51 mW
M325F4gDeep UV325 nm100 µW350 µW
M340F4gDeep UV340 nm0.16 mW0.75 mW
M365FP1gUV365 nm5.29 mW15.5 mW
M375F3gUV375 nm1.57 mW4.23 mW
M385FP1gUV385 nm7.7 mW23.2 mW
M395F3gUV395 nm1.91 mW6.8 mW
M395FP1gUV395 nm7.7 mW29.8 mW
M405F3gUV405 nm0.93 mW3.7 mW
M405FP1gUV405 nm7.7 mW24.3 mW
M415F3gViolet415 nm7.0 mW21.3 mW
M430F1gViolet430 nm2.9 mW7.5 mW
M455F3Royal Blue455 nm5.4 mW24.5 mW
M470F4Blue470 nm6.5 mW20 mW
M490F4Blue490 nm0.9 mW2.8 mW
M505F3Cyan505 nm3.7 mW11.7 mW
M530F3Green530 nm3.2 mW9.6 mW
MINTF4Mint554 nm8.5 mW28 mW
M565F3hLime565 nm4.4 mW13.5 mW
M590F3Amber590 nm1.5 mW4.6 mW
M595F2hPC Amber595 nm4.0 mW11.5 mW
M617F2Orange617 nm4.4 mW13.2 mW
M625F2Red625 nm5.7 mW17.5 mW
M660FP1Red660 nm4.7 mW15.5 mW
M680F4Deep Red680 nm2.8 mW9 mW
M700F4Deep Red700 nm1.9 mW6.4 mW
M740F2Far Red740 nm2.1 mW6.0 mW
M780F2IR780 nm1.15 mW7.0 mW
M810F3IR810 nm6.1 mW19.3 mW
M850F3IR850 nm4.1 mW13.4 mW
M880F2IR880 nm0.58 mW3.4 mW
M940F3IR940 nm4.2 mW14.2 mW
M970F3IR970 nm2.4 mW8.1 mW
M1050F3IR1050 nm0.92 mW3.0 mW
M1100F1IR1100 nm1.1 mW5.4 mW
M1200F1IR1200 nm0.9 mW2.5 mW
M1300F1IR1300 nm0.77 mW2.31 mW
M1450F1IR1450 nm0.44 mW1.34 mW
MBB1F1iBroadband470 - 850 nmj0.30 mW1.2 mW
MWWHF2kWarm White4000 Kl7.9 mW23.1 mW
MCWHF2kCold White6200 Kl8.8 mW27.0 mW
  • 製造ロットの違いや、温度、電流などの動作パラメータによって、LEDの実際の出力スペクトルは変動します。出力値や仕様の中心波長は参考データとしてご利用ください。
  • 可視光LEDの場合、人間の目が最も明るく感じる波長域におけるLEDの主要な波長を公称波長としています。従って、可視光LEDの公称波長は、分光器で測定したピーク波長とは一致しない場合があります。
  • 25 °Cで測定
  • M280F5、M310F1、M325F4、M340F4を除くすべてのLEDは、コア径Ø200 µm、NA0.22のMMファイバ(型番FG200UCC)を使用して試験を行っています。M280F5、M310F1、M325F4、M340F4は型番FG200AEA、M1450F1は型番FG200LCCのファイバで試験しています。
  • 最大電流での駆動時
  • M280F5、M310F1、M325F4、M340F4を除くすべてのLEDは、コア径Ø400 µm、NA0.39のMMファイバ(型番FT400EMT)を使用して試験を行っています。M280F5、M310F1、M325F4、M340F4は型番FG400AEAのファイバで試験しています。
  • 当社の280 nm~430 nmのLEDは駆動中に強いUV光を放射します。UV光を直接見ないよう十分にご注意ください。また、目の損傷を防ぐためUV光用保護メガネを必ず着用してください。皮膚など体の一部をUV光に曝さないようご注意ください。
  • これらのLEDは蛍光体変換LEDなので、デューティ比50%以下で10 kHzを超えた周波数変調時、LEDが完全に消灯しない場合があります。
  • MBB1F1の広帯域発光は蛍光体の光刺激によって生成されているので、デューティ比50%で1 kHzを超えた周波数の変調時、LED光が完全に消灯しない場合があります。 1 kHzを超える周波数の変調はデューティ比を減らすことによって得られます。 例えば、デューティ比5%では、10 kHzの変調が可能です。
  • 10 dB帯域幅
  • MWWHF2ならびにMCWHF2の白色光は蛍光体の光刺激によって生成されているので、5 kHzを超えた周波数に変調時、LED光が完全に消灯しない場合があります。
  • 相関色温度

ファイバ出力型LEDの特長

  • 公称波長範囲:280~1450 nm
  • 温白色(4000 K)、冷白色(6200 K)、広帯域(470~850 nm) LEDもご用意
  • 内蔵のEEPROMがLED動作パラメータを記憶
  • 最適化された温度特性により安定した出力を実現
  • マルチモードファイバーパッチケーブルの接続に適したSMAコネクタ

ファイバ出力型LEDは、バットジョイントと呼ばれる接続技術を使ってファイバに結合させた高出力シングルLEDを利用します。 このプロセスによりファイバ端がエミッタにできるだけ近づくようファイバーコネクタを配置しているので、ファイバ入力部での光損失が最小限に抑えられ、出力パワーが増大します。結合効率は、主として接続されているファイバのコア径とNAによって決まります。 より大きなコア径とより高いNA値によって、ファイバ端面における光損失は減少し、出力パワーは増大します。また、400 nmよりも短波長のLEDには高OHファイバのご使用をお勧めしています(推奨パッチケーブルについては下表をご参照ください)。

なお、これらのファイバ出力型LEDのコネクタに接続できるのはSMAコネクタだけですのでご注意ください。LEDへの機械的損傷を防ぐため、取り付けるコネクタのフェルールの長さは、規格EN61754-22:2005で規定されているSMAコネクタでの最大許容長さ9.812mmを超えないようにしてください。

各LEDのスペクトルや関連データのファイルは右表内のリンクをクリックするとご覧いただけます。LED同士を比較していただけるように、複数のウィンドウを同時に開くことが可能です。

最適化された温度管理
高出力のファイバ出力型LEDは、優れた熱安定特性を持っています。 LEDがマウントされた金属コアの回路ボードに、長さ34 mmのパッシブ冷却ヒートシンクが直接接触しています。これにより、LEDの接合温度の上昇による光出力の低下を最小限に抑えることができます。当社の高出力ファイバ出力型LEDの一部製品(M365FP1、M385FP1、M395FP1、M405FP1、M660FP1)は、放熱と温度安定特性を高めるため50 mm長いヒートシンクにマウントされています。 

白色LEDと広帯域LED
当社の冷白色および温白色LEDは数百nmにわたる広帯域スペクトルを有しています。これら2つのLEDの色の違いは相関色温度(色が最も近い黒体放射の温度)を用いて表わすことができます。一般的に温白色LEDはタングステン光源に近いスペクトル、冷白色LEDは、それよりも青色成分が強いスペクトルを有しています。冷白色LEDは温白色LEDに比べてほとんどの波長において発光強度が高いため、蛍光顕微鏡の用途やカメラのホワイトバランスに適しています。

ファイバ出力型LED MBB1F1は、広い波長域において比較的平坦なスペクトルを得られる設計となっております。 FWHM幅は500 nm~780 nmで、10 dB帯域幅の範囲は470 nm~850 nmとなっております。この広帯域光源のスペクトルについては右の表をご覧ください。

ドライバ
当社では、LEDに対応するドライバとしてLEDD1BUPLEDDC40DC2200DC4100DC4104の6種類をご用意しています(DC4100とDC4104にはDC4100-HUBが必要です)。ドライバの仕様については「LEDドライバ」タブ、対応するするドライバについては「仕様」タブをご覧ください。ドライバUPLED、DC40、DC2200、DC4100、DC4104は接続されたLEDのEEPROMから電流のリミット値を読み取り、最大電流値を自動的に設定してLEDを保護することができます。

光刺激用オプトジェネティクス実験用途

当社のファイバ出力型LEDは、オプトジェネティクス用途にも適しています。幅広い波長のラインナップと機構部の相互接続性が特長の製品となっております。また当社のLEDドライバDC4100ならびにコネクターハブDC4100-HUBを使用すると最大4つの光源を同時に駆動ならびに変調することが可能です。こちらをクリックして当社のオプトジェネティクス製品のラインナップをご覧ください。

パッチケーブルの選択
こちらのLEDは当社の多くのマルチモードファイバーパッチケーブルが取り付け可能です。LEDの出力波長に応じたファイバーパッチケーブルについては下表をご覧ください。SMAコネクタ付きパッチケーブルに加え、当社では片端にSMAコネクタ、もう一方の端にFC/PCコネクタフェルールあるいはファイバ素線がついたハイブリッドパッチケーブルもご用意しております。標準品としてご提供していない構成については当社のカスタムパッチケーブルのページをご覧ください。

Recommended Fiber and Patch Cables
LED WavelengthFiber TypeStock Patch Cable
< 350 nmFG400AEA
Ø400 µm, 0.22 NA,
Solarization Resistant
M113L SMA - SMA
350 nm - 700 nmFT400UMT
Ø400 µm, 0.39 NA, High OH
Custom Patch Cables
> 400 nmFT400EMT
Ø400 µm, 0.39 NA, Low OH
M28L SMA - SMA
M76L SMA - FC/PC
M118L SMA - Flat Cleave
M79L SMA - Ferrule
Legend
LED Mounted to a 50 mm Long Heat SinkLED Mounted to a 34 mm Long Heat Sink
Item #Color
(Click for
Spectrum
and Data)a
Nominal
Wavelengtha,b
Typical Ø200 µm
Core Fiber
Output Powerc,d,e
Minimum Ø400 µm
Core Fiber
Output Powerc,e,f
Typical Ø400 µm
Core Fiber
Output Powerc,e,f
Maximum
Current
(CW)c
Forward
Voltagec,e
Bandwidth
(FWHM)c,e
Typical
Lifetimec
Recommended
Driversg
M280F5hDeep UV280 nm0.2 mW0.5 mW0.8 mW500 mA6.26 V10 nm>1 000 hLEDD1B, DC40, UPLED, or DC2200
M310F1hDeep UV308 nm0.14 mW0.3 mW0.51 mW600 mA5 V30 nm>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M325F4hDeep UV325 nm100 µW260 µW350 µW600 mA5.2 V12 nm>5 000 hLEDD1B, DC40, UPLED, or DC2200
M340F4hDeep UV340 nm0.16 mW0.45 mW0.75 mW600 mA6.6 V10 nm>1 000 h
M365FP1hUV365 nm5.29 mW9.8 mW15.5 mW1400 mA3.75 V9 nm>23 000 hDC40 or DC2200
M375F3hUV375 nm1.57 mW3.2 mW4.23 mW500 mA3.7 V9 nm>40 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M385FP1hUV385 nm7.7 mW18 mW23.2 mW1400 mA3.65 V12 nm>40 000 hDC40 or DC2200
M395F3hUV395 nm1.91 mW4.8 mW6.8 mW500 mA4.5 V16 nm>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M395FP1hUV395 nm7.7 mW20.1 mW29.8 mW1400 mA4.0 V11 nm>10 000 hDC40 or DC2200
M405F3hUV405 nm0.93 mW3.0 mW3.7 mW500 mA3.6 Vj12 nmj>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M405FP1hUV405 nm7.7 mW19.3 mW24.3 mW1400 mA3.45 V12 nm>40 000 hDC40 or DC2200
M415F3hViolet415 nm7.0 mW14.4 mW21.3 mW1500 mA3.1 V14 nm>10 000 hDC40 or DC2200
M430F1hViolet430 nm2.9 mW5.3 mW7.5 mW500 mA3.66 V17 nm>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M455F3Royal Blue455 nm5.4 mW17 mW24.5 mW1000 mA3.5 V14 nm>10 000 h
M470F4Blue470 nm6.5 mW14 mW20 mW1000 mA3.1 V20 nm>50 000 h
M490F4Blue490 nm0.9 mW1.8 mW2.8 mW350 mA3.2 V26 nm>10 000 h
M505F3Cyan505 nm3.7 mW8.5 mW11.7 mW1000 mA3.7 V25 nm>10 000 h
M530F3Green530 nm3.2 mW6.8 mW9.6 mW1000 mA2.9 V30 nm>10 000 h
MINTF4Mint554 nm8.5 mW21 mW28 mW1225 mA3.5 VN/A>10 000 hDC40, DC2200, LEDD1Bk, UPLEDk, DC4100i, or DC4104i
M565F3lLime565 nm4.4 mW9.9 mW13.5 mW700 mA2.85 V105 nm>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M590F3Amber590 nm1.5 mW3.3 mW4.6 mW1000 mA2.6 V16 nm>10 000 h
M595F2lPC Amber595 nm4.0 mW8.7 mW11.5 mW1000 mA3.1 V80 nm>50 000 h
M617F2Orange617 nm4.4 mW10.2 mW13.2 mW1000 mA2.2 V15 nm>50 000 h
M625F2Red625 nm5.7 mW13.2 mW17.5 mW1000 mA2.2 V15 nm>50 000 h
M660FP1Deep Red660 nm4.7 mW10.6 mW15.5 mW1400 mA2.7 V18 nm>1 000 hDC40 or DC2200
M680F4Deep Red680 nm2.8 mW5.9 mW9 mW600 mA2.4 V20 nm>10 000 hLEDD1B, DC40, UPLED, DC2200, DC4100i, or DC4104i
M700F4Deep Red700 nm1.9 mW4.0 mW6.4 mW500 mA2.1 V19 nm>10 000 h
M740F2Far Red740 nm2.1 mW4.1 mW6.0 mW800 mA2.7 V22 nm>10 000 h
M780F2IR780 nm1.15 mW5.5 mW7.0 mW800 mA2.1 V28 nm>10 000 h
M810F3IR810 nm6.1 mW12.7 mW19.3 mW1000 mA3.6 V30 nm>10 000 h
M850F3IR850 nm4.1 mW8.6 mW13.4 mW1000 mA3.2 V30 nm>10 000 h
M880F2IR880 nm0.58 mW2.7 mW3.4 mW1000 mA1.7 V50 nm>10 000 h
M940F3IR940 nm4.2 mW10 mW14.2 mW1000 mA3.8 V60 nm>50 000 h
M970F3IR970 nm2.4 mW5.9 mW8.1 mW1000 mA1.9 V60 nm>10 000 h
M1050F3IR1050 nm0.92 mW2.3 mW3.0 mW600 mA1.4 V37 nm>10 000 h
M1100F1IR1100 nm1.1 mW2.0 mW5.4 mW1000 mA1.4 V50 nm>10 000 h
M1200F1IR1200 nm0.9 mW1.6 mW2.5 mW1000 mA2.2 V65 nm>10 000 h
M1300F1IR1300 nm0.77 mW1.42 mW2.31 mW1000 mA1.7 V80 nm>10 000 h
M1450F1IR1450 nm0.44 mW0.86 mW1.34 mW1000 mA1.88 V95 nm>10 000 h
MBB1F1mBroadband470 - 850 nmn0.30 mW0.8 mW1.2 mW500 mA3.6 V250 nm>10 000 h
MWWHF2oWarm White4000 Kp7.9 mW16.3 mW23.1 mW1000 mA2.9 VN/A>50 000 h
MCWHF2oCold White6200 Kp8.8 mW21.5 mW27.0 mW1000 mA2.9 VN/A>50 000 h
  • 製造プロセスや、温度、電流などの動作パラメータによって、LED の実際のスペクトルは変わります。 出力のプロットと中心波長の仕様はガイドラインとしてのご利用を目的としたものです。
  • 可視光のLEDにおいて、公称波長とはLEDが人間の目に対してもっとも明るく見える波長を示しています。分光器で測定したピーク波長とは一致しない場合があります。
  • 25℃で測定
  • M280F5、M310F1、M325F4、M340F4を除くすべてのLEDは、コア径Ø200 µm、NA0.22のMMファイバ(型番FG200UCC)を使用して試験を行っています。M280F5、M310F1、M325F4、M340F4は型番FG200AEA、M1450F1は型番FG200LCC のファイバで試験しています。
  • 最大電流で駆動時
  • M280F5、M310F1、M325F4、M340F4を除くすべてのLEDは、コア径Ø400 µm、NA0.39のMMファイバ(型番FT400EMT)を使用して試験を行っています。M280F5、M310F1、M325F4、M340F4は型番FG400AEAのファイバで試験しています。
  • 最大電流と最大電圧が、それぞれLEDの最大電流以上、順方向電圧以上であるドライバ。各ドライバの仕様については「LEDドライバ」タブをご覧ください。
  • 当社の280 nm~430 nmのLEDは駆動中に強いUV光を放射します。UV光を直接見ないよう十分にご注意ください。また、目の損傷を防ぐためUV光用保護メガネを必ず着用してください。皮膚など体の一部をUV光に曝さないようご注意ください。
  • こちらは4チャンネルのドライバで、ファイバ出力型LEDを駆動するにはコネクターハブDC4100-HUBが必要です。
  • 350 mAの電流での駆動時駆動時
  • このLEDの駆動は可能ですが、ドライバが供給できる最大電流によって制限され、最大出力には到達しません。
  • これらのLEDは蛍光体変換LEDなので、デューティ比50%以下で10 kHzを超えた周波数変調時、LEDが完全に消灯しない場合があります。
  • MBB1F1の広帯域発光は蛍光の光刺激によって生成されているので、デューティ比50%で1 kHzを超えた周波数に変調する時、LED光が完全に消灯しない場合があります。1 kHzを超える周波数の変調はデューティ比を減らすことによって得られます。例えば、デューティ比5%では、10 kHzの変調が可能です。
  • 10 dB帯域幅
  • MWWHF2ならびにMCWHF2の白色光は蛍光から光学的にシミュレーションされた発光によって作られているので、5 kHz以上の周波数で変調された場合、完全に消えない可能性があります。
  • 相関色温度

LEDの寿命および長期的なパワー安定性

LEDの特性の1つとして、時間の経過と共にパワーが自然に低下することがあげられます。 ほとんどの場合、パワーは緩やかに低下しますが、急速な低下や完全な停止、あるいは故障が突然起こることもあります。 LEDの寿命は、LEDの種類ごとに規定されたある割合のLEDが、あるパワーレベル以下に低下するまでの時間で定義されます。 寿命測定のパラメータはBXX/LYYで表され、ここでXXはその種類のLEDで寿命が過ぎた後の出力パワーが規定値のYY%以下になるLEDの割合を示します。 当社では、LEDの寿命をB50/L50で表しますが、これはその型番のLEDのうち50%のLEDの光パワーが規定の寿命がきた時に初期値の50%以下に低下するという意味です。 例えば、定格出力パワー150 mWのLED100個のうち、50個の出力パワーが規定の寿命を過ぎたときに75 mW以下に低下するということです。

最適化された温度管理

こちらのファイバ出力型LEDの放熱は安定な出力のために最適化されています。 ヒートシンクはLEDマウントに直接取付けられていて、熱的接触は適切な状態になっています。 これにより、LED接合面の温度の上昇によって生じる光出力パワーの減衰を最小に抑えることができます。


Click to Enlarge

LEDの波長と電流の関係を測定するためのセットアップ。使用した部品すべての一覧については下表をご覧ください。
Item #Description
-Fiber-Coupled LED
-SMA-to-FC/PC Fiber Patch Cable
LEDs with Wavelengths ≤405 nm: Custom Cable with FG105ACA Solarization Resistant Fiber
LEDs with Wavelengths >405 nm: M16L01
DC2200High-Power LED Driver, 2 A Current Limit
-Fourier Transform Optical Spectrum Analyzer

LEDの駆動電流によるスペクトル変動

すべてのLEDは駆動電流の変化によりスペクトルプロファイルならびにピーク波長が変化します。当社のファイバ出力型LEDについては光スペクトラムアナライザ(OSA)を使用し、駆動電流がゼロに近い値から最大値まで増加したときの波長シフトを調査しました。

LEDの発光プロファイルは比較的広がりがあり非対称です。LEDの重心波長は、発光プロファイルにおける波長の加重平均です(質量中心の計算と似ています)。次の式で与えられます。

Centroid Wavelength of an LED

ここに、I(λ)は波長λ毎での強度です。よってここでは電流の変化に対するLEDの重心波長を追うことにより、ピーク波長のシフトとスペクトルプロファイル全体の変化の影響を捉えます。 OSAのPeak Trackモードでは、ユーザ設定の強度の下限値を使用して計算に必要な波長の上限ならびに下限(λ2とλ1)を求めることにより、スペクトルピークの重心波長を自動的に計算します。ここでは強度の下限値をピーク強度より6 dB下がった値に設定しました。

各LEDには高出力LEDドライバDC2200を使用し、プリセットした電流値でLEDを駆動しています。各電流値ではOSAでLEDスペクトルを5回走査し、これらを合わせて平均スペクトルを生成しました。OSAは予測されるピーク波長の50 nmの範囲内で最大の強度値を探すことでピーク波長を特定し、上記に説明した方法で重心波長を計算します。重心波長はLEDの電流リミット値まで0.05 A毎に求められました。全てのプロセスはLED毎に4回繰り返し行いました。 OSAによる計測はすべて絶対パワーならびに高分解能分光モードで実施されています(OSAの動作モードについては製品紹介ページをご覧ください)。

計測結果は下表に掲載しています。グラフのアイコンをクリックしてご覧いただけます。各LEDの重心波長は、それぞれの電流値で得られたすべての値の平均値を求め、プロットされています。すべての実験における各電流値での最小ならびに最大波長が測定され、赤いエラーバーで示されています。最小電流値ではLEDの強度が弱すぎてノイズレベルを超えず、波長を正確に測定することができませんでした。そのような影響を及ぼす電流値はグラフから省かれています。

実験の制約

  • 型番毎に1つのユニットのみをテストしました。プロット図は電流毎の重心波長の一般的な変化を示すもので、出力波長の絶対値ではありません。同じ型番でもLEDにより重心波長にばらつきがでる可能性があります。
  • LEDは温度制御されていません。
Item #Nominal
Wavelength
Max Current
(CW)
Centroid Wavelength
vs. Current
(Click for Plot)
M365FP1a365 nm1400 mAWavelength vs Current
M375F3a375 nm500 mAWavelength vs current
M385FP1a385 nm1400 mAWavelength versus Current
M405F3a405 nm500 mAWavelength vs Current
M405FP1a405 nm1400 mAWavelength vs Current
M530F3530 nm1000 mALED wavelength versus current
  • これらのUV LEDのスペクトルは機器のノイズフロアが最大になるOSA201の波長の下限値に近くなっています。よって低い電流値で大きくなっているエラーバーは、測定におけるシステムノイズによるものでLEDの性能を表していません。OSA201はすべての測定において絶対パワーモードで動作しました。波長によるOSAのノイズフロアの変動についてはこちらをご覧ください。
Item #Nominal
Wavelength
Max Current
(CW)
Centroid Wavelength
vs. Current
(Click for Plot)
M595F2595 nm1000 mALED wavelength versus current
M617F2617 nm1000 mALED wavelength versus current
M625F2625 nm1000 mALED wavelength versus current
M740F2740 nm800 mAWavelength vs Current
M780F2780 nm800 mALED wavelength versus current
M880F2880 nm1000 mAWavelength vs Current
PinSpecificationColor
1LED AnodeBrown
2LED CathodeWhite
3EEPROM GNDBlack
4EEPROM IOBlue
Pin Out

ピン接続
右の略図には、ファイバ出力型LEDアセンブリのオス型コネクタが示されています。標準的なM8×1センサ円形コネクタです。 ピン1 と2はLEDへの接続用、ピン3と4は内蔵EEPROM(電気的消去可能ROM)用です。 当社以外のLED ドライバでは、ピン1とピン2に適切に接続し、EEPROM用ピンを介してLEDを動作させないようご注意ください。

駆動するLEDから最大の光パワーを出力させるには、LEDの最大電圧および最大電流と同等あるいはそれ以上の電圧と電流を出力できるドライバが必要です。

Compatible DriversLEDD1BUPLEDaDC40aDC2200aDC4100a,bDC4104a,b
Click Photos to EnlargeLEDD1B DriverupLED DriverDC40 DriverDC2200 DriverDC4100 DriverDC4104 Driver
LED Driver Current Output (Max)c1.2 A1.2 A4.0 AdLED1 Terminal: 10.0 A
LED2 Terminal: 2.0 Ae
1.0 A per Channel1.0 A per Channel
LED Driver Forward Voltage (Max)f12 V8 V14.0 Vd50 V5 V5 V
Modulation Frequency Using External Input (Max)5 kHzg-5 kHzg250 kHzg,h,i,j100 kHzg,h,j
(Simultaneous Across all Channels)
100 kHzg,h,j
(Independently Controlled Channels)
External Control Interface(s)Analog (BNC)USB 2.0USB 2.0, TTL, and Analog (BNC)USB 2.0 and Analog (BNC)USB 2.0 and Analog (BNC)USB 2.0 and Analog (8-Pin)
Main Driver FeaturesVery Compact Footprint
60 mm x 73 mm x 104 mm
(W x H x D)
USB-ControlledDriver Current Up to 4.0 A,
Manual and USB-Controlled
Touchscreen Interface with Internal and External Options for Pulsed and Modulated LED Operation4 Channelsb4 Channelsb
EEPROM Compatible: Reads Out LED Data for LED Settings-YesYesYesYesYes
LCD Display---YesYesYes
  • EEPROMから読み出した情報により、LEDへの最大電流を自動的に制限します。
  • ドライバDC4100とDC4104は、DC4100-HUBと組み合わせて使用すると、最大4台までのLEDに対して電力供給と制御を同時に行うことができます。このページに掲載されている全てのLEDは、DC4100またはDC4104を使用するときはDC4100-HUBが必要になります。
  • LEDの最大定格電流がドライバの最大出力電流を超えていても、そのドライバでLEDを駆動することは可能です。しかし、その場合は最大の光出力には到達できません。各LEDの最大定格電流については「仕様」タブをご覧ください。
  • LEDドライバDC40は、このページに掲載されているLEDに対して、適切な電流と電圧の組み合わせを自動的に選択するように設計されています。LEDの最大電流と順方向電圧は互いに依存します。DC40は順方向電圧が14.0 VのLEDを4.0 Aで駆動することはできません。詳しい内容は製品紹介ページをご参照ください。
  • 下記のファイバ出力型LEDはLED2端子に接続できます。
  • LEDの順方向電圧がドライバの最大電圧を超える場合は、LEDを駆動することはできません。各LEDの順方向電圧については「 仕様」タブをご覧ください。
  • MBB1F1 の広帯域発光は蛍光体の光刺激によって生成されているので、デューティ比50%で1 kHzを超えた周波数の変調時、LED光が完全に消灯しない場合があります。1 kHzを超える周波数の変調はデューティ比を減らすことによって得られます。例えば、デューティ比5%では、10 kHzの変調が可能です。
  • M565F3およびM595F2は蛍光体変換LEDなので、デューティ比50%以下で10 kHzを超えた周波数変調時、LEDが完全に消灯しない場合があります。
  • 小信号帯域幅:フルスケール電流の20%を超えない変調。ドライバには小信号でない波形も入力できますが、その場合は最大周波数が低下します。
  • MWWHF1およびMCWHF1の白色光は蛍光体の光刺激によって生成されているので、5 kHz以上の周波数で変調された場合、完全に消えない可能性があります。

Posted Comments:
Thibaut Moulin  (posted 2024-03-20 13:28:33.177)
Hi, i have a M590F3 source. I am interested of the shift wavelength for this source. I hav read the graphic for M595F2 beacause this source is near in term of wavelenght. It seems there is a mistake with the graphic because the waveleght value do not correspond to the M595F2 source.
hchow  (posted 2024-03-21 04:43:30.0)
Dear Mr. Moulin, thank you for your feedback. I do see the confusion now. I have checked the test reports of the M590F3 and M595F2, and they do correspond to the peak wavelengths at 590 nm and 595 nm. I apologise for the confusion on the raw data and the spectrum graph shown on our webpage. We will get it changed ASAP.
kim bumjin  (posted 2024-03-11 12:07:56.247)
hello. I want to make a collimated LED light source for RGB (455, 520, 625nm - not fixed) with a beam size of less than 5mm. Can you recommend a light source and collimating optics?
Suvvi K N  (posted 2023-10-27 11:53:57.63)
Hi, I recently purchased MCWHF2, 6200K, Cold white LED from thorlabs. I only used it couple of times and the LED seems to not working now. I did pay attention to the current and was kept within the requirement mentioned in the data sheet. I also did try to check inside this LED and I think that the metal core LED is damaged and needs to be replaced. Could you please provide some assistance as how to achieve this? Is it possible to purchase single metal core PCB LED compatible with this MCWHF2 light source from you and replace it by ourselves? Or do we need to ship it back to you for replacing it. The device was purchased in July 2023 for your reference. Thanks in advance
hchow  (posted 2023-11-02 09:46:51.0)
Dear Suvvi K N, thank you for your enquiry. It is unfortunate that your device is not functioning as it should. I will personally reach out to you via E-mail to see how we can assist you. Thank you.
user  (posted 2023-06-16 10:21:09.057)
I want to buy MBB1F1,but I wonder how its power / luminance acts as time and current changes.
jweimar  (posted 2023-06-22 02:10:02.0)
Thank you very much for your inquiry. You can find additional information about the power/ time dependence by clicking the “Stability” tab on the product page. We will reach out to you directly to share the plots with you.
user  (posted 2023-05-23 15:25:47.87)
Hi Thorlabs, I use the M1050F3 in combination with a M91L01 fiber (200 micron core). I measure only 220uW after the fiber instead of the expected 900uW. Do you see anything, I can try to improve that? Thanks!
hchow  (posted 2023-05-24 05:50:16.0)
Dear User, thank you for your feedback. I am sorry to hear that you are not getting the output optical power you are expecting from our products. I will personally reach out to you to see how best to solve your problem. Thank you.
斌 赵  (posted 2023-04-14 22:26:52.843)
Light source stability is too poor, can be repaired
hchow  (posted 2023-04-17 09:32:50.0)
Dear Mr. 斌 赵 , thank you for your feedback. I am sorry to hear that you are experiencing problems with your fiber coupled LED. But not to worry, I am here to help. I will personally reach out to you to rectify this problem. Thank you.
user  (posted 2023-03-13 10:26:55.243)
The axis labels for the spectrum in the spec sheet are swapped.
fmortaheb  (posted 2023-03-16 11:17:08.0)
Thank you very much for your feedback. We will correct it as soon as possible.
Biswaranjan Behera  (posted 2023-03-09 14:27:40.49)
Can this be operated using a pulser with a short pulse duration?
wskopalik  (posted 2023-03-14 05:01:21.0)
Thank you very much for your feedback! These fiber-coupled LEDs can be operated in a pulsed or modulated mode as well. I will contact you directly so we can see if your requirements can be achieved with these LEDs.
Dirk Hoenig  (posted 2022-03-01 12:14:57.417)
Hello Thorlabs, the specs datasheets of the fiber coupled LEDs state: "Optical power increases proportionally with the core diameter and nearly proportionally to the square of the NA." Why is that so instead of being proportional to the core area (thus diameter squared)? Best regards Dirk
wskopalik  (posted 2022-03-16 09:20:03.0)
Thank you very much for your feedback! It depends on the dimensions of the LED emitter compared to the fiber core if the power increases proportional with the core diameter or proportional with the square of the core diameter, i.e. the core area. For these fiber-coupled LEDs, the emitter is in most cases larger than the used fibers so the power is usually proportional with the core area. We will check and correct the statement in the spec sheets. Please note however that this proportionality should only be considered a rule of thumb. There may be deviations from this proportionality between different fibers due to the fiber type, OH content in the fiber, NA of the fiber, etc. I have also contacted you directly to discuss this in more detail.
M. H.  (posted 2022-02-18 02:49:06.78)
Hello, I would like to know if it is possible to run the LED's with more current if I provide enough cooling. I would like to use one of these LEDs to create a homogeneous illumination over a Square Core fiber (150x150um). But I need a power >10mW at the fiber output at a wavelength between 450-530nm. Thanks
dpossin  (posted 2022-02-21 05:21:51.0)
Dear customer, Thank you for your feedback. We generally do not recommend to increase the current over the specified maximum as this can lead to reduced lifetime or damage. However the optical output power can be increased by using a fiber with a larger core diameter. For example the output from M780F1 has been increased by a factor of around 5 by using a 1000µm core fiber (M30L02). I am reaching out to you in order to discuss this in more detail.
user  (posted 2021-08-07 01:24:01.76)
Hello, I would like to know the coherence length of led source MWWHF2. Thank you
YLohia  (posted 2021-08-06 04:59:53.0)
Hello, thank you for contacting Thorlabs. LEDs are incoherent sources, so we cannot spec or measure a coherence length for these.
user  (posted 2020-12-15 04:03:29.49)
Hello, I am looking for a fiber-coupled white-light LED with more output power than the 23.1 mW of the MWWHF2. Do you have something like that? Or would it be possible to use a multi-mode fiber with a core diameter > 400 µm to increase the power further? Thanks in advance and best regards.
MKiess  (posted 2020-12-15 10:39:43.0)
Thank you very much for your inquiry. If you use a fiber with a larger core diameter and a larger NA, this will lead to higher optical output powers at the fiber output. We recommend using multimode (MMF) fiber with the MWWHF2. Optical output power is specified for a Ø400 μm MMF with an NA of 0.39 at the maximum allowed LED current. Optical power increases proportionally with the core diameter and nearly proportionally to the square of the NA. I have contacted you directly to discuss further details.
Naveen Tangri  (posted 2020-10-23 16:05:09.817)
Hello, We're located in Santa Clara, California and we're looking for OEM quantities of broadband unmounted SMT LEDs for embedded applications. We looked at your LEDSW50 but its spectral power distribution curve is too "wavy gravy". However, the LED used in your MBB1F1 appears to have a flatter and more uniform spectral curve. So here's the question...would Thorlabs be willing to sell just the LED used in your MBB1F1? We'd be open to signing some sort of "non-compete" agreement, if required. Sorry for the oddball question, and "no" would be a perfectly acceptable response, but we wanted to know either way. Thanks and best regards!
MKiess  (posted 2020-10-27 07:01:49.0)
Dear Naveen, thank you very much for your inquiry. The right LED for your application in this case is probably the MBB1D1. This broadband LED ranging from 470nm to 850nm and has a relatively flat spectral emission over this wavelength range. Furthermore, this is the pure LED on a metal core PCB. I have contacted you directly to discuss further details.
John Keech  (posted 2019-11-20 16:36:43.507)
What is the laser safety rating of LED fiber coupled sources? Are they safety rated in this way? https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=5206 Thank you, John Keech Corning Inc.
MKiess  (posted 2019-11-22 10:32:04.0)
This is a response from Michael at Thorlabs. Thank you very much for the inquiry. These LEDs are classified in risk groups according to the International Standard "Photobiological Safety of Lamps and Lamp Systems" IEC 62471. This is different depending on the desired LED. The exact risk group of the individual LEDs can be found in the LED specification sheet, which can be downloaded on our webpage, in the Warnings and Safety section.
marcin.bartosik  (posted 2018-08-10 14:08:50.093)
Hello! Could you please let me know if the MCWHF2 can be powered by a 12V DC from a 280W power supply? Have a nice day, Marcin
swick  (posted 2018-08-13 05:12:19.0)
This is a response from Sebastian at Thorlabs. Thank you for the inquiry. Basically it is possible to drive our LEDs with constant voltage sources. In order to drive the MCWHF2 with a constant voltage you need to limit the current to 1 Ampere. I contacted you directly to provide further assistance.
edwin.walker.ctr  (posted 2017-10-11 19:52:36.64)
using the M780F2 780 nm, 5.5 mW (Min) Fiber-Coupled LED, with LEDD1Ba driver, what is the output power stability %rms? is it 5%rms variation or 10%rms output power variation
wskopalik  (posted 2017-10-19 10:03:13.0)
This is a response from Wolfgang at Thorlabs. Thank you very much for your inquiry. The driver LEDD1B is specified with a current ripple of 8mA. This ripple could also be seen in the light emission of the LED. The M780F2 has a max current of 800mA so this would correspond to 1% variation. The LED itself will show a decrease in power during operation which would depend e.g. on the current and on the ambient temperature. This decrease is typically in the range of 3-5%. When the LED is switched on, there might also be some short term overshoots due to the driver or due to temperature changes. Other variations are not expected. I will contact you directly to talk about your requirements in more detail.
fmor82  (posted 2015-11-25 16:38:00.073)
To Whom It May Concern: I am writing to ask you something about the cable used to power the LED (M385FP1). I would like to know how many wires you have inside this cable. Thank you in advance, Flavio Mor.
shallwig  (posted 2015-11-26 03:58:45.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. There are 4 wires inside the cable of our fiber coupled LEDs. In the “Pin Diagram” tab on the website you can find the pin assignment information : http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5206&pn=M385FP1#5262 The connector we use is a standard M8 x 1 sensor circular connector. I will contact you directly to check if you have any further questions.
user  (posted 2015-09-01 15:52:41.237)
Yes, I understand that now the fiber which you use is 200 um and 0.22NA. The thing which I don't understand is that the coupled light is the same that with the other of 0.39NA. It is supposed that it would be less the coupled light with 0.22NA than 0.39NA, but you haven't change any value, so I'm a bit confused. I thought that with 0.22NA the coupled light will be 3.14 times less than with 0.39NA. William
shallwig  (posted 2015-09-02 02:11:40.0)
This is a response from Stefan at Thorlabs. Thank you again for your inquiry. The values from the website did not change since we never measured them with a 0.39NA fiber, they were always measured with a 200 µm core 0.22NA fiber. 0.39NA was a typo in the specs which we revised. Maybe we can discuss this by email. Since you left no contact data, could you please contact me at europe@thorlabs.com. Thank you.
user  (posted 2015-09-01 13:32:41.34)
Hello, Last month I started to see Thorlabs light sources, and to see their technical characteristics to make a purchasment for my univerity laboratory. Today, I come back from holidays, and I see that some changes have taken place, you have change the fiber characteristics for fiber coupled light power. Last month, they were a fiber of 400 um and 0.39 NA and other of 200 um and 0.39 NA, but today the 200 um fiber has 0.22NA. I'm surprised that the light coupled power values doen't change in any case because I thought that it depends of fiber characteristics. Since I know, the coupled light must be 3 times less in 0.22NA case compared with 0.39NA case. William
shallwig  (posted 2015-09-01 09:01:41.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The power values were always tested with a 200µm 0.22NA fiber (FG200UCC). The numerical aperture NA 0.39 was a typo which we removed.
casey.donaher  (posted 2015-07-15 15:13:09.613)
Just noticed that the spec sheet for M617F1 says max 1000mA, but the DC2100 sets its max to 700mA when the M617F1 is plugged into it. One or the other is wrong. One the plus side, the other is right (maybe.)
shallwig  (posted 2015-07-16 07:01:23.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The maximum current which can be applied to this LED is as stated in the spec sheet 1000mA. In the manual of the DC2100 on page 14 http://www.thorlabs.com/thorcat/18300/DC2100-Manual.pdf it is described how the user Limit current can be changed. I guess you could not change this current to 1000mA for your M617F1. In this case there is most likely a wrong value written to the LEDs EPROM. I will contact you directly to troubleshoot this in more detail.
cilveti.ander.92  (posted 2015-03-19 16:51:17.157)
Hi, I was looking the M420F2 coupled light source to purchase it, because his great coupled power, 8.9 mW in 200um fiber. But then I read the datasheet, and I look that there puts that the minimun power coupled in a 400um fiber is also 8.9 mW... It is also strange that in others light sources usully the power coupled in 400un core fiber is 4 times bigger than in 200um(for example M365F1 200um:1mW and 400um:4.1 mW), but in 420nm case is less than 2(200um:8.9mW and 400um:16.2 mW). So the question is, is really that the power coupled in 200um fiber is 8.9 mW??or is another value??
shallwig  (posted 2015-03-20 06:54:48.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The specifications as stated on the website for these LEDs were measured and are correct so far. The assumption by increasing the core diameter and NA to increase the power proportionally does not take into account that each LED type has a different size and viewing angle (directional characteristic) which also influence the coupling efficiency. All the numbers we provide on the web and in the datasheets are based on real measurements. We always treat the measurements quite conservative which means that we reduce the results typically by 10%. We measure up to 5 different LEDs with 5 different patch cords. Then we take the average and the minimum value and reduce it by 10% for our specs. By accident for this specific LED the minimum power with a 400µm fiber is nearly the same as the typical output power with a 200µm fiber. The typical output power you can expect with a 200µm fiber is indeed 8.91mW. I will contact you directly to check if you need any further information.
andisetiono  (posted 2015-02-25 03:13:43.507)
I want to know, Is power cable included to the product? thank you
tschalk  (posted 2015-02-25 07:22:06.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. The power cable is attached to the fiber coupled LED. Please note that you need an additional LED controller to drive the unit. Therefore you can use a DC2100 or a LEDD1B.
user  (posted 2014-02-03 17:09:20.777)
Hello, are these continuous wave sources?
tschalk  (posted 2014-02-04 02:25:49.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. These LEDs are compatible with our LED drivers LEDD1B, DC2100 and DC4100 which can be found here: https://www.thorlabs.com/navigation.cfm?guide_id=2109. With all drivers the LEDs can be used as a continuous wave source. It is also possible to use the modulation input of each driver and to use the LEDs as a pulsed source. The DC2100 provides also Pulse Width Modulation Mode which can be used without an external Modulation source. Please contact me at europe@thorlabs.com if you have any further questions.
kcs32  (posted 2013-12-19 11:42:49.89)
Hello, I'm curious about the long power/EEPROM cable shown on the back of the fiber coupled LED. Is this cable permanently attached to the back of the device, or can it be removed? This is not obvious from the pictures and drawings I've seen. Can to CON8ML-4 mating connector be plugged directly into the device instead of at the end of this cable? I'm thinking of using these LED's in a small volume, portable device, so minimizing the space taken up by the long cable would be very helpful. Thank you
tschalk  (posted 2013-12-20 08:49:48.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. The cable is permanently attached to the LED so it can not be replaced by the CON8ML-4. We can offer you a device with a shorter cable and i will contact directly with more detailed information.
carlos.paladini  (posted 2013-11-21 19:31:52.507)
It seems that the M625F1 has a peak intensity actually at about 635 nm and the M617F1 has a peak at about 625 nm on the spectrum pop-up window. Is this correct? I would like an LED with peak intensity at 625 nm but am confused by the name of the LED and its stated peak light intensity. In other words, which LED actually delivers peak light intensity at 625 nm, the M617F1 or the M625F1? Thanks
tschalk  (posted 2013-11-25 06:47:50.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. For our visible LEDs the so called "dominant wavelength" is given and this specification takes the sensitivity of the human eye into account. The spectra provided on our homepage are correct and if you need a peak wavelength of 625nm the M617F1 would be the right choice.
joerg.koenig  (posted 2013-10-10 19:53:13.937)
Hi, what is the spectral power density [W/nm] of the MWWHF1 using a 400 µm core fiber?
tschalk  (posted 2013-10-15 05:10:00.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. Unfortunately we can not provide the spectral power density of this light source. It is also depending on which fiber you are using. I will contact you directly to discuss your application.
jlow  (posted 2012-09-26 09:52:00.0)
Response from Jeremy at Thorlabs: The 5.1mW is the typical output power when using a Ø400µm core fiber with 0.39 NA with 1000mA drive current. When a larger core fiber such as the M35L0x (Ø1000µm, 0.39NA) is used, the coupling efficiency from the LED to the fiber is increased, hence the 17.61mW min. power.
tpth  (posted 2012-09-26 09:27:45.0)
Dear Sir: I have a question: Why the mininmum power 17.61mW (in a table)can be obtained when you use 530nm LED with a fiber M35L0x, though input power is 5.1mW? I need a precise estimation of the amount of decrease in LED power during propagating in a fiber. Please let me know the correct answer before my order. Best regards. Tsutomu Hoshimiya, Prof. Tohoku Gakuin University
jvigroux  (posted 2012-06-06 11:13:00.0)
A response from Julien at Thorlabs: Thank you for your inquiry! There will always be a trade-off to be found between fiber diameter and/or NA (ie. beam quality) and optical power coupled into the fiber. When using a fiber having a NA of 0.39, the focal length for the collimation lens to be used should be about 1mm. The beam quality that would however result from the combined effect of such a short focal length and the fiber diameter would lead to quite high divergence. In you case, I would recommend using a somewhat longer focal length for the collimation lens and subsequently a beam expander for the beam diameter reduction. I will contact you to discuss further the exact requirements of your setup to find what the most suited solution would be.
igkiou  (posted 2012-06-06 04:37:26.0)
Hi, I am interested in creating a very collimated white beam of diameter < 0.8 mm. MCWHF1 provides enough output power when used with the fiber you used for your tests, a MM 400 um 0.39 NA fiber. What would you recommend using for collimation of the output of this combination? Would you recommend any of your prepackaged collimators? Thank you in advance for your assistance.
tcohen  (posted 2012-05-14 09:18:00.0)
Response from Tim at Thorlabs: Thank you for your interest in our products. Our sales department will contact you to provide you with an official quote.
emlee1  (posted 2012-05-13 12:32:44.0)
I am interested to purchase this product. Can you email me the quotation for this product and a suitable power supply for use in Singapore? Do include shipping to Singapore as well in your quote. Thanks.
jvigroux  (posted 2012-02-06 13:00:00.0)
A response from Julien at Thorlabs: thank you for your inquiry! Unfortunately, as of now, there is no LED available with a high enough power in the wavelength range. I will ocntact you to know your exact requirement sin order to see which alternative there could be.
kforsyth  (posted 2012-02-06 11:37:11.0)
Any plans for going shorter in wavelength soon, say to 250 - 300 nm?
jvigroux  (posted 2011-12-15 10:17:00.0)
A response from Julien at Thorlabs: I just measured the coupled power in a 460HP fiber from a MCWHF1. The output power out of the fiber was around 50nW. In comparison, a 400µm 0.39NA fiber would yield an output power of around 7mW.
jvigroux  (posted 2011-12-14 11:52:00.0)
A response from Julien at Thorlabs: thank you for your inquiry! We do not have the value yet but I will perform the measurement by tomorrow and let you know the obtained value.
doerr  (posted 2011-12-14 17:22:01.0)
Hi, I need a white light source coupled to a single-mode fiber. I've tried with regular halogen bulbs, but the output power is at least 10 times to low. The white light LED would be an option, even though the spectral distribution is not optimal. Can you give me any numbers what coupling efficiency or output power I can expect from a LED coupled to a single-mode fiber? Fiber type would be the same as with the 460HP patch cords.
jvigroux  (posted 2011-08-29 12:21:00.0)
A response from Julien at Thorlabs: thank you for your feedback. We are in the process of measuring the power coupled into different standard fibers using the fiber coupled LEDs. Before publishing those values however, the tests have to be ran until the end and critically assessed. I will contact you directly per email in order to discuss with you the values that can be expected for your configuration.
rhs  (posted 2011-08-22 12:50:51.0)
I miss some guidelines for choosing the optimal delivery fiber. Your measurement data has been obtained using a 400µm/0.4NA MM fiber, but that doesnt say much about the performance when using a different fiber. It would be extremely helpful to have just two graphs showing the spatial distribution and the angular distribution of intensity at the coupling plane. Thank you.
jjurado  (posted 2011-08-05 09:30:00.0)
Response from Javier at Thorlabs to last poster: Thank you very much for your feedback!The mounts for these fiber-coupled LEDs have been designed to accept for M6 and 1/4" diameter screws. We will take a look at our current units to make sure that both screws fit and will make changes if it turns out that 1/4" screws are not compatible. Regarding the marking of the center wavelength, there is actually an identification label on the back side of the device with the part number of the LED, which calls out the center wavelength (with the exception of the MCWHF1 cold white LED). Please contact us at techsupport@thorlabs.com if you have any further questions or comments.
user  (posted 2011-08-02 18:32:35.0)
The mounting slots are designed for M6 screws and dont pass 1/4" screws that are used in the USA. It would also be nice to have the center wavelength engraved on the housing, either on the front surface, or on the top edge.

こちらのページでは当社が販売するすべてのLEDをご覧いただけます。More [+]をクリックすると、下の各LED製品の波長をご覧いただけます。

Light Emitting Diode (LED) Selection Guide
Click Photo to Enlarge
(Representative; Not to Scale)
TypeUnmounted LEDsPigtailed LEDsLEDs in
SMT Packages
LED ArraysLED Ring LightCage-Compatible
Diffuse Backlight LED
Light Emitting Diode (LED) Selection Guide
Click Photo to Enlarge
(Representative; Not to Scale)
TypePCB-
Mounted LEDs
Heatsink-
Mounted LEDs
Collimated LEDs for MicroscopybFiber-
Coupled LEDs
c
High-Power LEDs for MicroscopyMulti-Wavelength
LED Source Optionsd
  • 25℃で測定
  • これらのコリメートLEDは、以下の顕微鏡の標準ポートならびに落射照明用ポートに取り付けることができます:Olympus BX/IX(型番末尾:-C1)、Leica DMI(型番末尾:-C2)、Zeiss Axioskop(型番末尾:-C4)、Nikon Eclipse(バヨネットマウント、型番末尾:-C5)
  • コア径Ø400 µm、NA 0.39のマルチモードファイバを使用した際の典型出力
  • 当社の多波長LED光源は、対応可能な波長のLEDを組み合わせて使用できます。
  • Leica DMI用コリメーターパッケージ(型番末尾:-C2)に使用したLEDの典型値
  • これらのLEDの最大電流時におけるコリメート出力の最小出力。コリメート用レンズは各LEDに取付け済み
  • Olympus BX/IX用コリメーターパッケージ(型番末尾: -C1)に使用したLEDの典型値
  • Zeiss Axioskop用コリメーターパッケージ(型番末尾:-C4)に使用したLEDの典型値
  • 400 nm~525 nmのスペクトルの青い領域で放射されるLEDの強度(%)
Back to Top

ファイバ出力型LED


Click to Enlarge

M365FP1、M385FP1、M395FP1、M405FP1、M660FP1は、長さ50 mmのヒートシンクにマウントされています。
  • LED の自動設定用 EEPROM内蔵(当社コントローラに対応)
  • >10 000時間の長寿命(M280F5、M325F4、M340F4、M660FP1を除く。詳細は「仕様」タブ参照)
  • 出力は対応するコントローラで変調可能(詳細は「LEDドライバ」タブ参照)
  • 温度管理が最適化されており安定した光強度
  • SMAファイバーコネクタ

このファイバ出力型LEDは、SMAコネクタ用のバルクヘッド付きヒートシンクに取り付けられています。当社の SMAコネクタ付きマルチモードファイバーパッチケーブルを使って、光学系に容易に組み込むことが可能です。パッチケーブルがLED筐体のSMAバルクヘッドに接続されると、LEDはSMAファイバーコネクタと突合せ結合する形になります。ハイブリッドパッチケーブルを使用してSMAコネクタからFC/PCコネクタフェルールファイバ素線への変換も可能です。お使いいただけるLEDドライバについては、「LEDドライバ」タブをご参照ください。尚、下の製品名に掲載されている最小出力パワーは、LEDをコア径Ø400 µmのマルチモードファイバーパッチケーブルと使用した場合の値です。

こちらのファイバ出力型LEDはFC/PCコネクタ用バルクヘッドでの構成も可能です。詳細は当社までお問い合わせください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
M280F5 Support Documentation
M280F5280 nm, 0.5 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥65,856
Today
M310F1 Support Documentation
M310F1308 nm, 300 µW (Min) Fiber-Coupled LED, 600 mA, SMA
¥90,572
Today
M325F4 Support Documentation
M325F4325 nm, 260 µW (Min) Fiber-Coupled LED, 600 mA, SMA
¥133,852
3-5 Weeks
M340F4 Support Documentation
M340F4340 nm, 0.45 mW (Min) Fiber-Coupled LED, 600 mA, SMA
¥63,982
3-5 Weeks
M365FP1 Support Documentation
M365FP1365 nm, 9.8 mW (Min) Fiber-Coupled LED, 1400 mA, SMA
¥99,602
Today
M375F3 Support Documentation
M375F3375 nm, 3.2 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥72,747
3-5 Weeks
M385FP1 Support Documentation
M385FP1385 nm, 18 mW (Min) Fiber-Coupled LED, 1400 mA, SMA
¥99,602
3-5 Weeks
M395F3 Support Documentation
M395F3395 nm, 4.8 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥57,151
3-5 Weeks
M395FP1 Support Documentation
M395FP1395 nm, 20.1 mW (Min) Fiber-Coupled LED, 1400 mA, SMA
¥86,880
3-5 Weeks
M405F3 Support Documentation
M405F3405 nm, 3.0 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥72,747
3-5 Weeks
M405FP1 Support Documentation
M405FP1405 nm, 19.3 mW (Min) Fiber-Coupled LED, 1400 mA, SMA
¥99,602
Today
M415F3 Support Documentation
M415F3415 nm, 14.4 mW (Min) Fiber-Coupled LED, 1500 mA, SMA
¥64,619
Today
M430F1 Support Documentation
M430F1430 nm, 5.3 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥35,232
3-5 Weeks
M455F3 Support Documentation
M455F3455 nm, 17 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥64,287
Today
M470F4 Support Documentation
M470F4470 nm, 14 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥40,664
Today
M490F4 Support Documentation
M490F4490 nm, 1.8 mW (Min) Fiber-Coupled LED, 350 mA, SMA
¥48,271
3-5 Weeks
M505F3 Support Documentation
M505F3505 nm, 8.5 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥59,833
3-5 Weeks
M530F3 Support Documentation
M530F3530 nm, 6.8 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,650
Lead Time
MINTF4 Support Documentation
MINTF4554 nm, 21 mW (Min) Fiber-Coupled LED, 1225 mA, SMA
¥79,778
Lead Time
M565F3 Support Documentation
M565F3565 nm, 9.9 mW (Min) Fiber-Coupled LED, 700 mA, SMA
¥69,884
3-5 Weeks
M590F3 Support Documentation
M590F3590 nm, 3.3 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥70,018
Today
M595F2 Support Documentation
M595F2595 nm, 8.7 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,517
Today
M617F2 Support Documentation
M617F2617 nm, 10.2 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,517
3-5 Weeks
M625F2 Support Documentation
M625F2625 nm, 13.2 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,517
Lead Time
M660FP1 Support Documentation
M660FP1660 nm, 10.6 mW (Min) Fiber-Coupled LED, 1400 mA, SMA
¥67,694
Lead Time
M680F4 Support Documentation
M680F4680 nm, 5.9 mW (Min) Fiber-Coupled LED, 600 mA, SMA
¥39,619
3-5 Weeks
M700F4 Support Documentation
M700F4700 nm, 4.0 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥42,702
3-5 Weeks
M740F2 Support Documentation
M740F2740 nm, 4.1 mW (Min) Fiber-Coupled LED, 800 mA, SMA
¥72,747
3-5 Weeks
M780F2 Support Documentation
M780F2780 nm, 5.5 mW (Min) Fiber-Coupled LED, 800 mA, SMA
¥62,657
Lead Time
M810F3 Support Documentation
M810F3810 nm, 12.7 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥44,940
Lead Time
M850F3 Support Documentation
M850F3850 nm, 8.6 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥45,572
Today
M880F2 Support Documentation
M880F2880 nm, 2.7 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥62,657
Lead Time
M940F3 Support Documentation
M940F3940 nm, 10 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,964
3-5 Weeks
M970F3 Support Documentation
M970F3970 nm, 5.9 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥55,047
3-5 Weeks
M1050F3 Support Documentation
M1050F31050 nm, 2.3 mW (Min) Fiber-Coupled LED, 600 mA, SMA
¥86,957
3-5 Weeks
M1100F1 Support Documentation
M1100F11100 nm, 2.0 mW (Min), Fiber-Coupled LED, 1000 mA, SMA
¥52,059
Lead Time
M1200F1 Support Documentation
M1200F11200 nm, 1.6 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥52,382
3-5 Weeks
M1300F1 Support Documentation
M1300F11300 nm, 1.42 mW (Min), Fiber-Coupled LED, 1000 mA, SMA
¥52,935
3-5 Weeks
M1450F1 Support Documentation
M1450F11450 nm, 0.86 mW (Min), Fiber-Coupled LED, 1000 mA, SMA
¥52,124
3-5 Weeks
MBB1F1 Support Documentation
MBB1F1Broadband (470 - 850 nm), 0.8 mW (Min) Fiber-Coupled LED, 500 mA, SMA
¥111,317
3-5 Weeks
MCWHF2 Support Documentation
MCWHF26200 K, 21.5 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,517
Today
MWWHF2 Support Documentation
MWWHF24000 K, 16.3 mW (Min) Fiber-Coupled LED, 1000 mA, SMA
¥61,517
Today
Back to Top

マウント付きLED用コネクタ

  • 4ピンメスPico型(M8)レセプタクル
  • マウント付きLEDの電源ケーブル接続用M8 x 1ネジ
  • パネル取付け用M8 x 0.5ネジ、カスタム筐体用
  • 長さ0.5 mのAWG24ケーブル
  • IP 67およびNEMA 6P規格準拠

コネクタCON8ML-4をご使用いただくことで、お手持ちの電源を当社のマウント付きLEDに接続することができます。当社では4ピンオス型M8接続ケーブル(型番CAB-LEDD1)もご用意しております。

PinColorSpecificationPin Assignment
1BrownLED Anode
2WhiteLED Cathode
3BlackEEPROM GND
4BlueEEPROM IO
CON8ML-4
マウント付きLEDの4ピンM8プラグに接続しているCON8ML-4
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
CON8ML-4 Support Documentation
CON8ML-4マウント付きLED用4ピンメス型コネクタ
¥5,006
Today