LN変調器(ファイバー結合型電気光学(EO)変調器)、1260 nm~1625 nm


  • Up to 40 GHz Lithium Niobate (LiNbO3) Modulators
  • Fiber-Coupled, High-Speed Modulation
  • Intensity, Phase, or I/Q
  • X-Cut or Z-Cut Devices

LNP6118

40 GHz Phase Modulator with Polarizer, Z-Cut

LNA2322

10 GHz Intensity Modulator,
X-Cut

LNLVL-IM-Z

Low Vπ 40 GHz Intensity Modulator, Z-Cut

Enlarged View

Related Items


Please Wait
Z-Cut Lithium Niobate Cross Section
Click to Enlarge

ZカットのLN強度変調器の断面
X-Cut Lithium Niobate Cross Section
Click to Enlarge

XカットのLN強度変調器の断面

特長

  • チタン添加の導波路
  • 低い光学損失
  • 長期にわたって安定したバイアス
  • ハーメティックシール型のパッケージ
  • FC/PCファイバーコネクタ

当社の量子エレクトロニクス(TQE)部門では、様々なLN(ニオブ酸リチウム、LiNbO3)位相変更器、強度変調器、およびIQ変調器を製造しています。これらの高性能なデバイスは、チタン添加導波路の技術がベースとなっています。広い帯域幅を有し、高速変調システムに適しています。

こちらの変調器は、XカットまたはZカットのLiNbO3から製造されています(右図をご覧ください)。Xカットの強度変調器は左右対称になっており、変調信号内で低い周波数チャープを示します。一方、Zカットの強度変調器では周波数チャープは高くなりますが、より効率的に変調を行うことができます(つまり、Vπ、半波長電圧がより低くなります)。位相変調器はZカットのみのご提供となりますが、これは左右対称なXカットの設計が単光路に適していないためです。これに対し、IQ変調器ではXカットの左右対称性を積極的に利用しています。

Zカットのデバイスは、常光モードだけでなく変調効率の異なる異常光モードにも対応可能です。ほとんどの用途では1つのモードしか必要としないため、Zカットのデバイスは出力ポートの前の位置に偏光子が組み込まれています。Zカットの変調器では、ほとんどの用途において、この偏光子は有用な要素となりますが、位相変調器LN53S-FC、LNP6119およびLNP4217は偏光子を必要としない用途向けで、偏光子は組み込まれていません。

こちらの変調器は入力が偏波保持ファイバ、出力がシングルモードファイバとなっており、入出力ともにFC/PCコネクタ付きです。偏波保持ファイバのコネクターキーはスロー軸にアライメントされています。また、スロー軸は変調器の異常光モードにもアライメントされています。すべてのLN変調器は出力側に偏波保持ファイバとFC/APCコネクタを取り付けることも可能です。カスタム構成(ファイバやコネクタの種類など)についての詳細やお見積りについては当社までお問い合わせください。

当社のすべてのファイバ結合型LN変調器は、当社のLN変調器ドライバに対応しています。また、当社のファイバ出力型波長可変レーザをOバンド、CバンドまたはLバンド光源として一緒に使用することもできます。光ファイバーシステムのテストや測定用に一体型システムをご希望の場合は、高速光トランスミッタ位相変調タイプの光トランスミッタ校正済みのE/O変換機などもご用意しています。

Maximum Ratings for LiNbO3 Modulators
Optical Input Power100 mW
Input RF Power24 dBm
Operating Temperature Range0 °C - 70 °C
Storage Temperature Range-40 °C - 85 °C

強度変調器の仕様

Item #LNA2322LNA2124LNA6213LNA6112LNLVL-IM-Z
Optical
Operating Wavelengtha1525 nm - 1605 nm1525 nm - 1605 nm1260 nm - 1625 nm1525 nm - 1605 nm1525 nm - 1605 nm
Optical Insertion Loss≤5.0 dB (4.0 dB Typ.)≤5.0 dB (4.0 dB Typ.)≤6.5 dB (5.0 dB Typ.)
@ 1310 nm
≤5.5 dB (4.5 dB Typ.)
@ 1550 nm
≤5.0 dB (4.0 dB Typ.)≤5.5 dB (4.5 dB Typ.)
Optical Return Loss≥40 dB≥40 dB≥40 dB≥40 dB≥40 dB
Optical Extinction Ratio
(@ DC, 1550 nm)
≥20 dB≥20 dB≥20 dB≥20 dB≥20 dB
Optical Input Power (Extraordinary Mode)≤100 mW
Optical Input Power
(Ordinary Mode)
≤100 mW≤10 mWb
Electrical (@ 1550 nm)
E/O Bandwidth (-3 dB)≥10 GHz (14 GHz Typ.)≥10 GHz (15 GHz Typ.)≥30 GHz (35 GHz Typ.)≥30 GHz (35 GHz Typ.)10 GHz (Typ.)
Operating Frequency RangeDC to 15 GHz (Min)DC to 15 GHz (Min)DC to 40 GHz (Min)DC to 40 GHz (Min)DC to 40 GHz (Min)
RF Vπ (@ 1 GHz)≤6.5 V (4.5 V Typ.)≤6.5 V (4.3 V Typ.)≤6.0 V (5.5 V Typ.)≤6.0 V (5.5 V Typ.)2.2 V (Typ.)
RF Vπ (@ 20 GHz)----≤3.9 V (3.5 V Typ.)
RF Vπ (@ 40 GHz)----≤6.0 V (5.0 V Typ.)
DC Bias Vπ (@ 1 kHz)≤10.0 V (6.5 V Typ.)≤15.0 V (13.0 V Typ.)≤5.0 V (3.5 V Typ.)≤11.0 V (8.5 V Typ.)≤11.0 V (9.0 V Typ.)
S11-12 dB (-10 dB Max), DC to 10 GHz-12 dB (-10 dB Max), DC to 25 GHz
-8 dB (-6 dB Max), 25 to 40 GHz
RF Input Power24 dBm Maximum
Photodetector
Reverse Bias Voltage-5.5 V to -3.0 VN/A
Responsivity0.1 mA/mW to 0.5 mA/mWN/A
Output Optical Power
Monitoring Range
-5 dBm to 10 dBmN/A
Mechanical
Crystal OrientationX-CutZ-CutZ-CutZ-CutZ-Cut
RF ConnectionMale SMP (GPO®† Compatible), Full DetentFemale 1.85 mm (V)Female 1.85 mm (V)Female 2.92 mm (K)
Fiber TypeInput: PANDA Polarization Maintaining
Output: SMF-28®† Single Mode
Fiber Lead Length1.5 m Typ.
Internal PolarizerN/AcAligned with the Extraordinary Mode of the ChipAligned with the Extraordinary Mode of the ChipAligned with the Extraordinary Mode of the ChipAligned with the Extraordinary Mode of the Chip
Environmental
Operating Case Temperature0 °C to 70 °C
Storage Temperature-40 °C to 85 °C
  • これらの変調器は規定の波長用に設計されています。他の波長で変調器を使用する場合、(光学素子の変性を起因とする)光学損失の恒久的な増加を引き起こす可能性があり、保証の対象外となります。規定より短い波長の入力による光学損失は、通常は、変調器を80 °Cで1時間加熱すると元に戻ることが多いです。
  • 入射光の偏光状態をアライメント中は過剰な光パワーが常光モードに入射されないよう特に注意を払う必要があります。過剰なパワーの常光が偏光子によって吸収され、変調器に損傷を与える可能性があります。
  • LNA2322には偏光子が内蔵されていません。異常光モードのみに対応します。

位相変調器の仕様

Item #LN65S-FCLN53S-FCLNP6118LNP6119LNP4216LNP4217
Optical
Operating Wavelengtha1525 nm - 1605 nm1260 nm - 1625 nm1260 nm - 1625 nm
Optical Insertion Loss≤4.5 dB (3.0 dB Typ.)≤5.5 dB (5.0 dB Typ.) @ 1310 nm
≤4.5 dB (4.0 dB Typ.) @ 1550 nm
≤7.25 dB (6.0 dB Typ.) @ 1310 nm
≤5.75 dB (5.0 dB Typ.) @ 1550 nm
Optical Return Loss≥40 dB
Optical Input Power
(Extraordinary Mode)
≤100 mW
Optical Input Power
(Ordinary Mode)
≤10 mWb≤100 mW≤10 mWb≤100 mW≤10 mWb≤100 mW
Electrical (@ 1550 nm)
S11-12 dB (-10 dB Max), DC to 10 GHz-12 dB (-10 dB Max), DC to 25 GHz
-8 dB (-6 dB Max), 25 to 40 GHz
E/O Bandwidth (-3 dB)10 GHz Typ.35 GHz Typ.10 GHz Typ.
Operating Frequency RangeDC to 15 GHz (Min)DC to 40 GHz (Min)DC to 40 GHz (Min)
RF Vπ (@ 10 GHz)6.5 V (Typ.)7.0 V (Typ.)3.5 V (Typ.)
RF Vπ (@ 30 GHz)-≤9.5 V (8.5 V Typ.)≤5.5 V (4.6 V Typ.)
RF Input Power24 dBm Maximum
Low-Frequency Modulator Specifications (@ 1550 nm)
Operating Frequency RangeN/ADC to 1 MHz (Typ.)DC to 1 MHz (Typ.)
VπN/A10 V (Typ.) @ 1 kHz13 V (Typ.) @ 1 kHz
Mechanical
Crystal OrientationZ-Cut
RF ConnectionMale SMP (GPO®† Compatible), Full DetentFemale 1.85 mm (V)Female 2.92 mm (K)
Fiber TypeInput: PANDA Polarization Maintaining
Output: SMF-28®† Single Mode
Fiber Lead Length1.5 m Typ.
Internal PolarizerAligned with the Extraordinary Mode of the ChipN/AcAligned with the Extraordinary Mode of the ChipN/AcAligned with the Extraordinary Mode of the ChipN/Ac
Environmental
Operating Case Temperature0 °C to 70 °C
Storage Temperature-40 °C to 85 °C
  • これらの変調器は規定の波長用に設計されています。他の波長で変調器を使用する場合、(光学素子の変性を起因とする)光学損失の恒久的な増加を引き起こす可能性があり、保証の対象外となります。規定より短い波長の入力による光学損失は、通常は、変調器を80 °Cで1時間加熱すると元に戻ることが多いです。
  • 入射光の偏光状態をアライメント中は過剰な光パワーが常光モードに入射されないよう特に注意を払う必要があります。過剰なパワーの常光が偏光子によって吸収され、変調器に損傷を与える可能性があります。
  • これらのデバイスにはには偏光子が内蔵されていません。常光モードと異常光モードのどちらにも対応しています。最適変調は異常光モードで得られます。

IQ変調器の仕様

Item #LNQ4314
Optical
Operating Wavelengtha1525 nm - 1575 nm
Optical Insertion Loss≤9.0 dB (7.0 dB Typ.)
Optical Return Loss≥40 dB
Optical Extinction Ratio≥20 dB
Optical Input Power≤100 mW
Electrical
S11-12 dB (-10 dB Max), DC to 25 GHz
-8 dB (-6 dB Max), 25 to 30 GHz
E/O Bandwidth (-3 dB)≥20 GHz (25 GHz Typ.)
Operating Frequency RangeDC to 30 GHz
RF Vπ (@ 1 GHz)≤7.5 V (6.0 V Typ.)
DC Biases Vπ (@ 1 kHz)≤10.0 V (8.0 V Typ.)
RF Input Power24 dBm Maximum
Mechanical
Crystal OrientationX-Cut
RF Connections (Two)Male SMPM (GPPO®† Compatible), Full Detent
Fiber TypeInput: PANDA Polarization Maintaining
Output: SMF-28®† Single Mode
Fiber Lead Length1.5 m Typ.
Environmental
Operating Case Temperature0 °C to 70 °C
Storage Temperature-40 °C to 85 °C
  • これらの変調器は規定の波長用に設計されています。他の波長で変調器を使用する場合、(光学素子の変性を起因とする)光学損失の恒久的な増加を引き起こす可能性があり、保証の対象外となります。規定より短い波長の入力による光学損失は、通常は、変調器を80 °Cで1時間加熱すると元に戻ることが多いです。


†GPO、GPPO、SMF-28はCorning社の登録商標です。

強度変調器のピン配列

LNA2322 10 GHz Intensity Modulator, X-Cut, Pin Diagram
Click to Enlarge

10 GHz強度変調器、 Xカット、LNA2322のピン配列
LNA2124 10 GHz Intensity Modulator, Z-Cut, Pin Diagram
Click to Enlarge

10 GHz強度変調器、 Zカット、LNA2124のピン配列
LNA6213 40 GHz Intensity Modulator Pin Diagram
Click to Enlarge

40 GHz強度変調器LNA6213のピン配列
LNA6112 Small Form Factor Housing 40 GHz Intensity Modulator Pin Diagram
Click to Enlarge

40 GHz小型強度変調器LNA6112のピン配列
40 GHz Intensity Modulator Pin Diagram
Click to Enlarge

40 GHz低Vπ 強度変調器LNLVL-IM-Zのピン配列

位相変調器のピン配列

10 GHz Phase Modulator Pin Diagram
Click to Enlarge

10 GHz位相変調器LN65S-FC、LN53S-FCのピン配列
40 GHz Phase Modulator Pin Diagram
Click to Enlarge

40 GHz位相変調器LNP6118、LNP6119のピン配列
Low V<sub>pi</sub> 40 GHz Phase Modulator Pin Diagram
Click to Enlarge

40 GHz低Vπ 位相変調器LNP4216、LNP4217のピン配列

IQ変調器のピン配列

10 GHz Phase Modulator Pin Diagram
Click to Enlarge

25 GHz IQ変調器LNQ4314のピン配列

ファンクションジェネレータの出力を増幅してLN位相変調器を駆動

Vpi
Click to Enlarge

図1:この実験セットアップを用いて、ファンクションジェネレータを中心に据えて構築した簡単なRF源でLN位相変調器を十分に駆動できるかどうかを評価しました。

当社ではLN変調器のラインナップを取り揃えており、これらはファイバ出力型レーザ光源からの光の変調用に適しています。LN変調器はしばしば1 GHz以上で駆動することが求められますが、その場合はRF電圧源の特性が重要になります。当社では、ファンクションジェネレータを中心にして構築した簡単なセットアップで、LN位相変調器を駆動できるかどうかを調査しました。このための実験セットアップには変調された光信号のスペクトルを記録する機器も含まれています。変調された光のスペクトルを解析することで、この簡単なRF源でLN位相変調器が駆動可能であることを確かめました。こちらのページでは当社の実験アプローチと結果をまとめております。

実験の設計とセットアップ

セットアップにおけるRF電圧源の設計では、まずLN位相変調器の駆動に必要なRF源の供給電力を求める必要がありました。電力に対する要求は、この用途で要求される変調度を得るのに必要な駆動電圧を見積もることから行いました。変調度を選択するプロセス、変調度と駆動電圧の関係、そしてRF源に要求される電力を見積もるのに用いた計算式などの詳細についてはLab Facts(右のボタン)の資料をご覧ください。これらの検討により、ファンクションジェネレータのみではこの用途に必要な信号パワーが得られないことが分かりました。解決策として、低ノイズの増幅器をファンクションジェネレータとLN位相変調器の間に挿入しました。さらに変調器の手前にローパスフィルタを設置し、ファンクションジェネレータに起因すると思われる信号歪みを取り除きましたLN位相変調器を正弦波のRF電圧で駆動し、1550 nmのCWレーザ光に正弦波位相変調をかけました。

LN位相変調器の後に走査型ファブリペロー干渉計を設置し、その出力をオシロスコープに接続して、変調光のスペクトル測定とモニタを行いました。この目的にファブリペロー干渉計を使用したのは、位相変調された光の微細なスペクトルを測定するには高い分解能が必要なためです。1550 nmの波長では、1 GHzの周波数の差は0.8 pmの波長の差に相当します。測定されたスペクトルは走査時間の関数として記録されます。Lab Factsの資料では、ファブリペローの走査時間を相対的な周波数の単位に変換する簡単な方法をご紹介しています。この実験ではΔf = (1.17 GHz/ms)Δtと見積もっています。

実験結果

Lab Factsの資料に示すように、位相変調された光のスペクトルには、周波数foのレーザーキャリアのピークを中心にして、対称にサイドバンドが現れることが理論的に予測されます。各サイドバンドはレーザーキャリアのピーク周波数から変調周波数fmの整数倍の位置にあります(fo ± Nfm、ここで N = 1, 2, ...)。サイドバンドの相対的な高さは変調度の関数になります。同様に変調度はRF駆動電圧のピーク-ピーク値の関数です。変調度が与えられると、レーザーキャリアピークとサイドバンドの相対振幅が計算できます。これにより、用途のニーズに応じてそれぞれのピークに対するパワー分布を調整できます。当社では、RF源が適切にLN位相変調器を駆動したことを確かめるのに、このモデルで予測されたパワーを用いました。

図2と4に示すスペクトルは、当社が測定した変調スペクトルの代表的なものです。図3はキャリアとサイドバンドのパワーの相対値を変調度の関数として表した理論曲線です(レーザーキャリアピーク:赤実線、1次サイドバンド:青点線、2次サイドバンド:緑点線、3次サイドバンド:紫点線)。黒の矢印は図2のスペクトルに相当する変調度を示し、グレーの矢印は図4のスペクトルに相当する変調度を示しています。これらの結果により、当社が測定した周波数と適用した変調周波数は一致し、またスペクトルのパワー分布はRF源のピーク-ピーク駆動電圧と整合していることを確かめました。以上のように予測と測定結果が良く一致していることから、ファンクションジェネレータを中心に構築した簡単なRF源は、LN位相変調器のドライバとして使用可能であると結論しています。

EO Phase Modulator Spectrum for Vpp 3.63
Click to Enlarge

図4: Vpp= 3.63 Vの時のLN位相変調器によるスペクトル
キャリア周波数はfo、変調周波数はfm = 1 GHzです。X軸はファブリペロー干渉計の走査時間で、信号の相対的な周波数スペクトルに直接関連付けることができます。
EO Phase Modulator Sideband Relative Power for 0.44 Modulation Depth
Click to Enlarge

図3:これらの曲線は、キャリアとサイドバンドの各ピークの相対的なパワーを変調度の関数として表しています。
黒の矢印で示した変調度0.44は図2のスペクトルに対応し、グレーの矢印で示した変調度0.56は図4に対応します。
EO Phase Modulator Spectrum for Vpp 2.85
Click to Enlarge

図2:Vpp= 2.85 Vの時のLN位相変調器によるスペクトル。
キャリア周波数はfo、変調周波数はfm = 1 GHzです。X軸はファブリペロー干渉計の走査時間で、信号の相対的な周波数スペクトルに直接関連付けることができます。

Posted Comments:
Fumihiko Kannari  (posted 2024-03-18 10:47:12.933)
I am using a LN65S-FC in a Michelson Interferometry. Light signal must go through the modulator twice in both directions. On the modulator there are "IN" and "OUT" for light direction. What do those mean?
ksosnowski  (posted 2024-03-21 01:34:43.0)
Hello Fumihiko, thanks for reaching out to Thorlabs. The LN65S-FC is intended as unidirectional. This device may be used bidirectionally to some extent however we cannot guarantee the performance of bias, Vpi, or bandwidth. The output fiber is also SM and it would be critical to align the reverse direction polarization within the SM fiber which would require a paddle polarization controller. I have reached out directly to discuss your application in further detail.
Michael Chack  (posted 2024-02-27 23:26:22.7)
Hi, I have this LNA2322 modulator. After a long time using it, and it had worked properly, suddenly today I just wondered that it has not any optical output !!! Everything is OK, the bias voltage, the input optical power, the fibers, the connectors, its physical conditions... But it has not optical output. I have never seen this before. (NOTE: At all times, I have followed all safety principles and critical conditions of working with this device.)
jdelia  (posted 2024-03-04 11:45:30.0)
Thank you for contacting Thorlabs. This appears to be either a fiber break or connector damage. I have reached out to you directly so that we may troubleshoot this device.
Desalegn wol  (posted 2024-02-09 09:56:40.207)
I recently bought LNA6213 to work at 40GHz. I am wondering what is the voltage required for the modulator to reach 40GHZ? the voltag requirement seems out odf range of the maximum 24 dBm. how to achieve this?
cdolbashian  (posted 2024-02-16 03:36:52.0)
Thank you for reaching out with this inquiry. Looking at the drive voltage graph on the overview page, we call for ~7.5-8V for the 40GHz drive frequency. As you mention, and as we mention on the page, the maximum input power is 24dBm, which corresponds to 10Vpp. It seems that perhaps you were using RMS voltage when calculating the corresponding voltage to 24dBm? 24dBm for this device corresponds to ~10Vpp which is below what we spec for the driving voltage at 40GHz. I have contacted you directly to discuss this further.
Cristian Tong  (posted 2023-11-13 16:27:05.1)
Dear sir/madam, I have a question about the relation between RF driving power, Vpp, and V_pi of LN65S-FC phase modulator. In the product datasheet, it is declared that the half wave voltage V_pi of this modulator is 6.5V. On the other hand, the RF input power is 24dBm, which corresponds to Vpp = 10.02V, which is less than 2V_pi=13V. Is it possible to set the driving voltage between -6.5V to +6.5 V? or the voltage should kept under 5V? It seems there is a problem with the data given in the specs of this product.
ksosnowski  (posted 2023-12-05 01:44:38.0)
Hello Cristian, thanks for reaching out to Thorlabs. Vpi is defined as peak to peak, so for LN65S-FC using -3.25 V to +3.25 V will result in the full Pi of phase shift. Vpp must still remain below ~10V in order to not exceed the 24dBm RF thermal power limits for sine modulation. I have reached out directly to discuss your application in further detail.
Vladimir Zenin  (posted 2023-10-27 11:09:26.903)
Hello Thorlabs, I am thinking to use your intensity modulator to make Q-switch all-fiber laser (with fiber cavity, Er-fiber active medium and 980-nm pump). Therefore I have two questions: 1) The limit on the optical input power (100 mW), does it mean average power or the peak power? In my laser the average power will be low (10-100 mW), but the peak power might be higher than 100 mW 2) What will be if the pump, 980 nm, will go into the modulator? Will it simply go through, or is it better to avoid it? Thank you in advance!
ksosnowski  (posted 2023-11-02 11:46:04.0)
Hello Vladimir, thanks for reaching out to Thorlabs. 100mW is our safe operating limit for peak power with these modulators. We recommend avoiding passing the pump wavelength into the modulator as it may result in photorefractive damage. I have reached out directly to discuss this further.
Florian Prawits  (posted 2023-10-12 11:20:08.22)
Dear employees of Thorlabs, I have a question regarding the two phase modulators: LN65S-FC LN53S-FC 1. Since the input fiber is PM and my laser source is also using a PM (key to slow-axis oriented) fiber, is it even necessary to consider the inline polarizer of the LN65S-FC? Are there any drawbacks to be expected by opting directly for the LN53S-FC? 2. Is it possible to obtain these models with a PM output fiber and/or FC/APC connectors? Kind regards Florian Prawits
ksosnowski  (posted 2023-10-13 02:13:26.0)
Hello Florian, thanks for reaching out to Thorlabs. The inclusion of the polarizer usually depends upon the application. The LN chip itself supports two polarization modes. The optical losses of both modes are similar, but the Vpi’s are quite different. If the laser being used has a low polarization extinction ratio, or the PM orientation is not perfectly aligned, elliptically polarized light could be injected into the modulator. This would allow mixing of the two polarization modes with unintended results. To prevent any the mixing of the polarization modes, a polarizer is inserted in the LN65S modulator. We have offered PM fiber and various connectors and for these requests you can email techsales@thorlabs.com directly. I have reached out directly to discuss your application in further detail.
soowoong Lee  (posted 2023-10-06 10:48:54.543)
Hi, I purchased LN65S-FC and plan to use it In product LNA6112, the relationship between frequency and voltage is shown in a graph However, in LN65S-FC, I don't know the relationship between input(RF) voltage and output frequency is unknown. Please tell me the voltage and frequency relationship expressed graphically in product LN65S-FC Thank you in advance
ksosnowski  (posted 2023-10-13 05:45:19.0)
Hello Soowoong, thanks for reaching out to Thorlabs. As LN65S-FC is a phase modulator, measuring the exact frequency response as not as straightforward for us compared to an intensity modulator. We only test the response at a couple of discrete frequencies to verify performance rather than run a continuous sweep to obtain S21 data. I have reached out directly to discuss this further.
Igor Litvin  (posted 2023-09-18 11:25:21.31)
Good day. We want to buy LNQ4314. We want to use it for frequency shift arounf 7 GHz. What exactly extra we have to buy to perfom the experiment? Regards. Igor.
cdolbashian  (posted 2023-10-19 10:42:31.0)
Thank you for reaching out to us with this application-based inquiry. I have contacted you with some details to answer your question. For future application-type inquiries, please reach out to your local tech support team at Europe@thorlabs.com.
Chii-Chang Chen  (posted 2023-04-17 15:54:26.057)
Dear Sir, I bought your phase modulator in April 2022 via UNICE E-O SERVICES INC. I saw from the spec that the electrical connector is SMP. I bought a cable with SMP jack from another company. But I cannot plug the cable on the modulator. I do not know if I bought the cable with wrong SMP connector. You can find the CAD file of the SMP jack cable from the link below https://drive.google.com/file/d/1huIKe3k7ubCnDKACZkKepqcZwhD1zuxK/view?usp=sharing Please kindly give me an example of the cable with the correct SMP connector. Many thanks for your help. Chii-Chang Chen Professor in National Central University
cdolbashian  (posted 2023-04-26 09:48:43.0)
Thank you for reaching out to us with this inquiry! Unfortunately, I do not feel safe clicking the cloud download link you provided here. We do, however, have an offering of SMP jacks, and associated mechanical drawings. I have contacted you directly to show you where such documentation lives on our website. Hopefully this will be sufficient for you to ensure compatibility.
user  (posted 2023-04-16 16:47:15.28)
The extinction ratio of the modulator we obtained at 1550nm light with DC modulation appears too low (Pmax/Pmin~=10). Does it mean that the crystal is faulty. Can you suggest some diagnostic steps? Also, to make sure, do you express the extinction ratio as 10log(Pmax/Pmin) or as 20log(Pmax/Pmin)?
cdolbashian  (posted 2023-04-26 09:51:27.0)
Thank you for reaching out to us with this inquiry. We do indeed express the ER as 10log(Pmax/Pmin). I have emailed you directly with some questions, suggestions, and guidelines for the trouble you are seeing.
Laurent Pien  (posted 2023-03-22 14:51:23.34)
Hello What are mechanical dimensions of your 10GHz Mach Zehnder component, please? Thanks in advance
ksosnowski  (posted 2023-03-24 03:07:35.0)
Hello Laurent, thanks for reaching out to Thorlabs. You can view the mechanical dimensions of LN65S-FC's package in the CAD File under the red document icons on this page. Unfortunately the dimensions of internal components such as waveguides are proprietary. I have reached out directly to discuss this application further.
Joseph Izatt  (posted 2022-11-09 16:00:41.527)
Hi, since your intensity modulators are based on phase shifting one (or both) of the paths of a Mach-Zehnder interferometer, could you make the other output of the interferometer available so the modulator could function as a very fast 1x2 optical switch?
ksosnowski  (posted 2022-11-10 10:56:22.0)
Hello Joseph, thanks for reaching out to Thorlabs. Currently this is outside our manufacturing capabilities for the LN modulators. I have contacted you directly regarding this.
user  (posted 2022-07-21 16:04:56.407)
What is the typical/max Vpi of LN65S-FC @ 1 GHZ?
cdolbashian  (posted 2022-07-26 02:40:58.0)
Thank you for reaching out with this inquiry. As we do not have specific data for all the Vpi for our full operation range, I have reached out to you to discuss some potential estimates for this value.
user  (posted 2022-06-28 18:04:44.22)
Hi, Do you have LN65S-FC with lower Vpi option?
cdolbashian  (posted 2022-07-06 11:47:58.0)
Thank you for reaching out to us with this inquiry. I have contacted you directly with regards to the feasibility of this as a future stock part, and current custom part.
Joakim Argillander  (posted 2022-05-18 06:56:45.3)
Hi! What is the input impedance of the LN82S-FC and the LN65S-FC? I am currently designing a driver board, and I cannot find anywhere whether the modulators are 50 ohm or high impedance.
ksosnowski  (posted 2022-05-23 02:11:31.0)
Thanks for reaching out to Thorlabs. LN82S-FC and LN65S-FC have 50 Ohm input impedance.
user  (posted 2022-05-17 16:21:47.26)
Hi, Do you have 'frequency - Vpi' graph or data for LN65S-FC phase modulator?
ksosnowski  (posted 2022-05-23 02:10:19.0)
Thanks for reaching out to Thorlabs. At 1 GHz the Vpi would be around 5 V. We do not have Vpi vs frequency plots for the phase modulators as we don’t have an easy way to measure the Vpi at frequencies lower than 10 GHz. At DC we would estimate that it is in the 3-4 V range, DC can be applied to the device but you should note that the maximum RF input power is rated at 24 dBm (~2.8 V DC), and exceeding this can cause the device to fail.
user  (posted 2022-03-25 14:29:14.98)
What are the DC bias voltage limits? I'd like to know maximum and minimum voltage before applying power to the EOM.
cdolbashian  (posted 2022-04-01 02:00:14.0)
Thank you for reaching out to us at Thorlabs. We recommend a minimum voltage of 0V, and a maximum of 20V. We have confirmed that 20V is appropriate for operation whereas 35V will damage the device. Unfortunately, at this time we haven't tested between 20-35V. For guaranteed lifetime/performance, I would recommend 20V.
stefano chiodini  (posted 2022-02-10 09:17:08.23)
Good morning, I am looking for a phase modulator EOM fiber coupled at 532 nm. Do you have any? Thank you in advance, Stefano Chiodini
ksosnowski  (posted 2022-02-15 05:40:45.0)
Hello and thanks for reaching out to Thorlabs, custom products can be requested by emailing techsales@thorlabs.com or by using the red "Request Quote" button above. We will discuss the possibility of offering this customization directly.
Yazhou wang  (posted 2021-12-16 04:51:13.597)
Hello, how can I calculate the minimum pulse duration of the intensity EO modulator?
YLohia  (posted 2021-12-23 01:02:41.0)
Hello, the minimum pulse duration can be estimated by 1/(maximum bandwidth) of the modulator. Please note that this is an estimate only and not a guaranteed spec as the result can depend on the minimum peak intensity, the drive electronics, and production variations.
user  (posted 2021-11-16 23:13:08.41)
Hello I have a question about the LN81S-FC internal photodetector In the datasheet there is one reverse voltage for the photodiode, what is this? Do I derive this detector with an external separate circuit?! If the answer is yes, please send me details of the design? If the answer is No, what is the reverse bias in the data sheet? Is there any note in photodiode usage or can we connect it directly to an oscilloscope and get data?! best regards
jgreschler  (posted 2021-11-18 10:51:13.0)
Thank you for reaching out to Thorlabs. The integrated photodiode is designed to monitor the DC levels of the modulator and can be driven with just a simple DC power supply. The reverse bias specification on the data sheet is applied to the photodiode similar to the products in our DET series. You can read more about this application, including recommended circuit diagrams, here https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9020
Anthony Garzarella  (posted 2021-07-05 01:08:25.52)
I am looking for a fiber-coupled EO modulator, like your LN82S-FC, that can be used at 1064nm. It seems that all of your modulators are spec'ed for 1550 nm. Can you help?
YLohia  (posted 2021-07-07 02:59:14.0)
Hello, thank you for contacting Thorlabs. Custom products can be requested by emailing techsales@thorlabs.com or by using the red "Request Quote" button above. We will discuss the possibility of offering this customization directly.
user  (posted 2021-06-12 12:36:31.3)
I would like to reproduce the modulator EO bandwidth (S21) measurement for this modulator. My expectation is that I would sweep the RF input and monitor the output power on an optical power meter. If I have a single wavelength into a photodiode I obtain half the power at the DC term because of the square law nature of the detector. If I have multiple sidebands, these will beat to produce DC terms and IF terms in the photodiode. In heterodyne systems where I care about the RF I must ensure the photodiode amplifier has the appropriate bandwidth to pass those sidebands. My question is whether the IF beating terms created from the modulated sidebands are irrelevant to an optical power meter and if only the total DC power is used to determine the incident optical power. In other words, is the optical power meter only concerned with the DC power, or is it necessary to consider any IF generated? How does Thorlabs perform this measurement? Thank you.
YLohia  (posted 2021-06-15 11:04:54.0)
We make the S21 measurement using a Vector Network Analyzer (VNA). For S21 in our test configuration, Port 1 of the VNA supplies a small-signal, frequency swept source that is coupled into the RF port of the modulator. A voltage is applied to the DC bias of the modulator in order to bias the modulator at quadrature (the half-power point). The optical output from the modulator is coupled into a high-speed photodetector; the bandwidth of the detector should meet or exceed the frequency range of the source. The output of the photodetector is coupled into Port 2 of the VNA, which measures the received signal. The response of the photodetector will need to be removed from the VNA measurement in order to get the response of the modulator (for Thorlabs’ ultrafast photoreceivers (https://www.thorlabs.com/navigation.cfm?guide_id=2558), a file with the response data for a specific device is available upon request).
Jim Zhang  (posted 2021-05-24 12:21:30.1)
From specifications, it seems this product is for 1500 - 1600 nm wavelength application. My interest is at 1064 nm. Do you have similar product for 1064 nm wavelength applications?
YLohia  (posted 2021-05-24 02:13:51.0)
Thank you for contacting Thorlabs. I have reached out to you directly regarding this.
mogendi Mogendi  (posted 2021-05-06 19:58:31.46)
With show of diagrams, explain how intensity modulator functions, specifically LiNbO 3 modulator.
YLohia  (posted 2021-05-07 10:45:35.0)
The lithium niobate intensity modulator is controlled by applying a voltage to the RF input. This directly changes the refractive index of the lithium niobate waveguide via the electro-optic effect. It is a Mach Zehnder Interferometer configuration, so the relative phase between the two arms of the MZI results in controllable constructive and destructive interference. This is how the intensity is changed.   The input fiber is PM, so it is required to have the polarization aligned with the slow axis of the fiber to operate correctly. The source should be around 1550nm.   The voltage required to switch between max signal level and minimum is called Vpi. Equivalently it is the voltage to cause a relative phase shift of pi radians in the MZI. The units are set to be biased around the middle of the negative slope. What this means is that, to reach about a maximum signal level, the user should apply –Vpi/2. To reach a minimum, the user should apply +Vpi/2.  The bias point can also be separately adjusted with two of the pins on the package.   The remaining two pins on the package are for photodiode feedback. The photodiode signal is low when the output into fiber is maximized. The photodiode signal is high when output into fiber is minimum. This is simply a direct connection to the photodiode, so it should be considered a current source. The current has to be detected by traversing some load resistance and measuring the voltage across the resistance. Typical current levels are uA to low mA range. More information, including diagrams and equations, can be found in online literature or in textbooks.
Markus Schmidt  (posted 2021-05-01 18:44:45.22)
Hello, I read the datasheet of LN81S-FC. in page 2 you wrote "field replaceable smp connector" for it's RF connector. what do you mean about field replaceable ? Is that mean we can replace it with another RF connector?
YLohia  (posted 2021-05-03 01:59:59.0)
Hello, thank you for contacting Thorlabs. The "field replaceable" connector is intended to be changed with another RF connector of the same type by the end-user in the event there is some damage to the existing connector.
Michael S  (posted 2021-03-24 05:41:54.99)
Hello, The specs of the phase modulators state that the max input power is 24 dBm, consequently the maximum V_p2p should be 10 V. This in turn limits the achievable modulation depth, given that the typical V_pi is 7V. I am asking to verify that I have read and understood the specs correctly in order to respect the power limitations of the device. Thanks a lot.
YLohia  (posted 2021-03-25 10:53:43.0)
Hello, thank you for contacting Thorlabs. Yes, your understanding here is correct -- the modulation depth will be limited by the 24 dBm max RF power (10.02 Vpp) and the Vpi spec of your device.
william B  (posted 2021-03-18 15:46:45.29)
I am using a LN86S-FC. I observe much higher insertion losses (18db) when biased for max throughput. This test datasheet states a measured insertion loss of 5db. I have checked the input polarization and ensured it is aligned for maximum output power. What other things should I check? I am interested in buying more units, but I need to solve the excess loss issue first. Thanks in advance for your help.
YLohia  (posted 2021-03-29 02:43:20.0)
Hello, thank you for contacting Thorlabs. Based on the description of the problem, it appears that there may be an issue with the fiber/connector. Please inspect the two fiber connectors under a fiberscope for damage and use a (low power) fiber fault tester to check for breaks along the length of the input and output fibers.
Preeti Yadav  (posted 2021-02-09 05:25:29.177)
Hello! For our quantum key distribution setup, we want to inquire about the electro-optic phase modulator to achieve polarization control. Can the phase modulator be used to generate one of the four polarization states, say, linearly diagonal states at 45 degrees and -45 degrees, and circularly polarized states, left and right, upon inputting a linearly polarized light at 45 degrees to the modulator. At the moment we require the modulation frequency to be around 100 MHz, is that a possibility with the 10 GHz phase modulators? Thank you!
YLohia  (posted 2021-03-15 03:34:56.0)
Hello, thank you for contacting Thorlabs. In theory, without the polarizer in the LN65S-FC (so the correct part number being LN53S-FC), you could use the modulator as a polarization controller. That being said, these modulators are not optimized for such applications and we wouldn't be able to spec performance. Additionally, there would be significant drift. Please also note that the output fiber is a regular single mode fiber, which is not designed to maintain any specific polarization state.
Van Rudd  (posted 2020-12-29 19:38:47.09)
You have a nice plot showing how V_pi varies with frequency for the intensity modulators, but not the phase modulators. Do you have that data? Also, from what is listed on the spec page it looks like the intensity modulator has a lower V-pi than the phase modulator. Why is this? Thanks.
YLohia  (posted 2021-01-15 02:08:45.0)
Unfortunately, we do not have plots of the EO Frequency Response for the Phase Modulators as this is not an easy measurement to make for Phase Modulators because an external interferometer is needed to characterize this data. The Vpi is different in the intensity and phase modulators because they have fundamentally different structures. The biggest difference is layout of the optical waveguides (the intensity modulator layout allows for a push-pull configuration, see the diagrams in the Overview section of this page). There are also other aspects of the device design that can affect the Vpi.
bo-Hun choi  (posted 2020-07-22 01:30:45.28)
Hi I purchased a couple of your product "LN82S-FC" and am doing experiment. I want to use bias controller for LN82S because of the condition change as time. I wonder that the pin3 and 4 can be used for this purpose. Are these pins alive for this purpose? I am looking forward to hearing from you Adam
YLohia  (posted 2020-07-22 09:37:20.0)
Hello Adam, thank you for contacting Thorlabs. Yes, Pins 3 & 4 are intended to be used for DC bias control. You may use our MBX bias controller for such an application.
user  (posted 2020-06-09 12:14:14.403)
Does this device come with loose tube 900 micron or tight buffer 900 micron fiber?
YLohia  (posted 2020-06-09 02:43:00.0)
Thank you for contacting Thorlabs. We use tight buffer fibers for these devices.
Zichao Zhou  (posted 2020-03-04 22:58:45.923)
Hi I am a Ph.D student in University of Ottawa. I am planning to buy a single side band modulator. Here I have a few questions about this IQ modulator. I want to use this IQ modulator as a single side band modulator. I am wondering how should I give a RF frequency to this modulator. Should I give the the two frequency with exact 90 degree phase shift if I want to use it as a single side band modulator. How can I apply this frequency if I only have one radio frequency generator. Another question is that would the single side band modulator shift the original optical frequency to a lower frequency or a higher frequency. Can I control the direction of the frequency shifting. Looking forward to your reply. Thank you! Regards Zichao
asundararaj  (posted 2020-03-06 10:08:07.0)
Thank you for contacting Thorlabs. I have reached out to you via email with this information.
Il-Bum Kwon  (posted 2020-02-03 03:26:15.293)
When I modulate the light with sinusoidal pattern using LN81S-FC, Is it necessary to control bias voltage of LN81S-FC? This modulator will experience temperature change. If I need to control bias control to compensate the temperature effect, then what should I do? Can you support any electric board to control bias voltage?
YLohia  (posted 2020-02-03 11:52:42.0)
Thank you for contacting Thorlabs. We do recommend using a bias controller for the intensity modulators, especially for applications where the ambient temperature will be unstable. We offer the MBX bias controller for this.
user  (posted 2019-12-23 21:54:52.6)
too expensive
YLohia  (posted 2019-12-26 04:16:51.0)
Thank you for your feedback. We are sorry to hear that you find our lithium niobate modulators too expensive. If you are looking to use this in an OEM application and/or are looking to purchase a large quantity, please email us at Sales-TQE@thorlabs.com to discuss volume pricing.
Alexey Kokhanovskiy  (posted 2019-12-01 23:40:37.953)
Dear Sir/Mme Could you recommend a controller for bias voltages applied to IQ modulator DC bias input ports? With respect, Alexey Kokhanovskiy
llamb  (posted 2019-12-04 04:35:36.0)
Hello Alexey, thank you for contacting Thorlabs. We do not have a recommended bias voltage controller for the LN86S-FC; a controller that meets our DC Bias voltage specs will suffice.
Muhammad Adeek  (posted 2019-09-16 19:36:09.46)
Dear Representative, I want to purchase an optical modulator that must support 10GHz pulses for setting up the Phase-OTDR system. Kindly guide me which out of the three models (LN82S-FC, LN81S-FC, LN53S-FC) are suitable in my case?
YLohia  (posted 2019-09-16 03:01:35.0)
Hello, thank you for contacting Thorlabs. The first two are intensity modulators while the third is a phase modulator. I have reached out to you directly to discuss your application further.
gregory.gaeumann  (posted 2018-08-31 11:52:53.037)
Hello, I would like to use your 10 GHz Phase modulator to generate large phase modulations (for serrodyne frequency shifting). Unfortunately, the maximal RF input power is limited to 24 dBm, which is quite low. Is this limit really critical or does it only lead to a slow warm-up of the device? In case it is critical, can you tell me the limiting factor? Thank you.
llamb  (posted 2018-09-07 11:21:10.0)
Thank you for contacting Thorlabs. We have only qualified these devices up to 24 dBm for the RF input power and for lifetime testing. The primary limiting factor is the termination circuit that utilizes thin film resistors. These resistors should be able to handle higher power levels if the device is properly heat sunk. I will reach out to you directly to discuss your application and some limitations further.
mchen  (posted 2018-05-22 15:06:44.77)
Hello, If using LN66S-FC or LN27S-FC at 1064nm, how high the insertion loss roughly will be? Thanks, Mike
YLohia  (posted 2018-05-22 04:54:09.0)
Hello Mike, thank you for contacting Thorlabs. At 1064 nm, while these modulators can technically be used, the waveguides will definitely not be single mode; they will be multi-mode due the cut-off wavelength being specified at 1290-1450 nm. The insertion loss, modulation efficiency (Vpi), extinction ratio, etc. will all change considerably from the values that we specify at 1550nm. Unfortunately, we have not performed testing outside of the specified operating wavelength range.
hnguyen43  (posted 2018-05-07 11:00:34.96)
Can this modulator work for the wavelength range between 1100-1180nm? If not, can you customize an intensity modulator for that wavelength range?
YLohia  (posted 2018-05-09 10:29:58.0)
Thank you for contacting Thorlabs. At 1100-1180 nm, while these modulators can technically be used, the waveguides will definitely not be single mode; they will be multi-mode due the cut-off wavelength being specified at 1290-1450 nm. The insertion loss, modulation efficiency (Vpi), extinction ratio, etc. will all change considerably from the values that we specify at 1550nm. Unfortunately, we are unable to offer a custom GHz modulators based on wavelength range at the moment.
jlpeng  (posted 2018-03-09 08:26:35.26)
This is not phase and intensity modulator, but phase or intensity modulator. I need an integrated phase and intensity modulator with compact package, i.e. a modulator can change the phase and the amplitude of input light signal. Do you have such kind of modulator(PM fiber pigtailed, bandwidth DC-10 MHz)?
YLohia  (posted 2018-03-16 10:17:22.0)
Hello, thank you for contacting Thorlabs. Are you looking to control the phase and intensity independently or simultaneously? The LN86S-FC is the only modulator we currently offer that can be used to modulate the intensity and phase of light simultaneously (but not independently) with the proper biasing and drive signals. This may require fairly complex drive and bias control depending on the desired output. This style of modulator has been used for advanced telecommunication modulation schemes (for example, 16-QAM). If you wish to control the intensity and phase independently using our parts, you will have to cascade two different intensity and phase modulators.
cristhian_alex19  (posted 2018-02-20 12:20:49.237)
Hello! Please tell me what would be the optimal voltages that should enter the iq modulator from the BIAS,to work as a phase or intensity modulator in the LN86-S modulator?
YLohia  (posted 2018-04-09 05:47:34.0)
Hello, thank you for contacting Thorlabs. I will reach out to you directly to get more details about your application to better answer your question.
akg  (posted 2018-01-31 22:22:19.57)
Hello, I am looking for a setup which looks like: SFL1550P ---> LN82S-FC (or LN81S-FC) ---> LN53S-FC Please suggest if there will be issues in above interconnections. Specifically input of LN53S-FC is polarization maintaining while the output of LN82S-FC is not. Please comment on this and contact me as I wish to proceed quickly. Atul
tfrisch  (posted 2018-02-06 10:04:01.0)
Hello Atul, thank you for contacting Thorlabs. You will need to be sure that the SM fiber of LN82S-FC launches the light aligned to the PM ax is of LN53S-FC. This could be achieved with a fiber polarization controller. Alternatively, we are able to offer LN82S-FC with a PM fiber on both the input and output. I will reach out to you directly to discuss which of these options is more suitable for your application.
jason.a.willis99  (posted 2018-01-04 14:32:16.553)
Could you please send me the application note for this product?
tfrisch  (posted 2018-01-04 03:06:47.0)
Hello, thank you for contacting Thorlabs. I will send you the application note as well as a link to our Lab Fact presentation which has some information on driving modulators which may be relevant to these amplitude modulators as well as the phase modulators used in the experiment.
arjan.meskers  (posted 2017-07-21 15:50:31.39)
The description states "PM input fiber pigtail and a SM output fiber pigtail." PM fibers are by definition single mode (i.e. SM), however SM fibers are not by definition polarization maintaining. It is not clear to me if the output fiber is also polarization maintaining, this also holds for the product '10 GHz Intensity Modulator, Zero Chirp'. Could you clarify the type of output fiber?
tfrisch  (posted 2017-07-26 01:11:34.0)
Hello, thank you for contacting Thorlabs. The input fiber is polarization maintaining as the modulation will only occur for one linear input state. The output will be modulated, but since a single mode (and not PM) fiber is used, the polarization of the modulated signal can vary with stress and bends in the fiber. We can offer versions that have PM fibers on both sides as a custom if you need. I will reach out to you directly as well.
user  (posted 2017-07-21 07:25:06.81)
For the phase and intensity modulators you should offer them with FC/APC connectors and/or not connectorized as depending on the system they will be used in the reflection from the end face of the connector will cause feedback.
tfrisch  (posted 2017-07-26 01:44:08.0)
Thank you for contacting Thorlabs. We can offer these connectorized according to your needs. Please email TechSupport@Thorlabs.com for a quote.
benjamin.haylock2  (posted 2017-05-04 15:46:46.647)
Is it safe to solder the DC pins?
nbayconich  (posted 2017-05-22 09:43:08.0)
Thank you for contacting Thorlabs. The pins on our Lithium Niobate Intensity Modulators are intended to be soldered. A Techsupport representative will contact you directly.
nasertrus  (posted 2017-03-21 08:43:05.833)
Hello! How to manage optical modulator LN82S-FC? It have SMP connector and 4 pin? What I must do to modulate input signal? Sorry, but I can't find this information in the Manual.
tfrisch  (posted 2017-03-30 05:10:52.0)
Hello, thank you for contacting Thorlabs. I see you have already been in contact with a member of our Technical Support Team about the pin diagrams and operation techniques.
mlaroton  (posted 2017-03-15 08:24:51.667)
Hi, do your 10 GHz intensity modulators (LN82S-FC, or LN81S-FC) include a built-in polarizer? We plan to use them in a double pass setup with a reflection upon a faraday mirror so it is crucial that both polarizations can circulate through the device. Thank you very much, Miguel
tfrisch  (posted 2017-03-15 09:38:00.0)
Hello, thank you for contacting Thorlabs. While these modulators do not have internal polarizers, they are sensitive to polarization. Furthermore, they are not fully bidirection, and performance would be very limited in the reverse direction. I will reach out to you directly with details.
yingwah.wu.civ  (posted 2016-09-27 18:14:56.25)
Can LN65S-FC be used for transceiver pair for delay line purpose? Thanks,
jlow  (posted 2016-10-05 02:06:00.0)
Response from Jeremy at Thorlabs: I will contact you directly about your application.
saranha1001  (posted 2016-07-12 10:44:28.417)
What is the polarization dependent loss of this product? I couldn't find it in the spec.
user  (posted 2016-06-20 15:38:57.803)
Hello, What is the phase transition in this modulator? Is it standard 2 state 180 deg. or it's controlled by RF signal bias?
besembeson  (posted 2016-06-22 09:23:40.0)
Response from Bweh at Thorlabs USA: No it is not a two state modulator. The phase is controlled by the RF signal input.
user  (posted 2016-06-20 13:02:19.567)
Hello, It seems like my int. modulator react only for increasing slope of modulating RF signal (3,5-4,5V, 0-15Mhz, square signal). (Modulated signal is similar to triangles). I would like to ask, is it too low rf signal frequency, or maybe this modulator feature is to react only for that slope? But if yes, then how to demodulate logical 0 ?
besembeson  (posted 2016-06-22 09:12:51.0)
Response from Bweh at Thorlabs USA: Please contact me at techsupport@thorlabs.com to further discuss your application.
yue.s  (posted 2016-05-19 06:06:14.71)
What is the max input optical power for the intensity modulator LN82S-FC? moreover is the RF and DC voltage mentioned in the spec are the average value or the peak value?
besembeson  (posted 2016-05-19 04:11:36.0)
Response from Bweh at Thorlabs USA: We recommend keeping the input power to under 100mW. That is the RMS voltage.
stefano.minardi  (posted 2015-11-19 12:45:30.847)
Dear Sirs, In order to select the RF driver I should use for the NL05-FC amplitude modulator at 30GHz, I would need the RF input power in dBm. Could you please provide this value? Thank you and best regards Stefano Minardi
besembeson  (posted 2015-11-20 11:48:33.0)
Response from Bweh at Thorlabs USA: If you are using a sinusoidal signal, with the 10V peak to peak maximum input voltage, the maximum RF power you would need will be about 24dBm. In practice you would not need up 10V (especially if you only need half-wave) so the power will be lower than this.
tbarrett  (posted 2014-01-08 13:37:44.233)
Does this product have a users manual?
jlow  (posted 2014-01-09 04:08:34.0)
Response from Jeremy at Thorlabs: The LiNbO3 modulators come with a characterization sheet with a drawing showing the pin-outs of the modulators. There's no user manual but I will send to you an application note for your reference.
blwpgs  (posted 2013-07-29 11:49:45.217)
Hello! Please tell me what the nominal the bias voltage at the modulator LN05S-FC? (DC Bias Voltage) On your website I can not find this information. In the Data datasheet does not say anything about the bias voltage (minimum, maximum). Please let me know in what range are the data voltage. Best regards, Alex.
jlow  (posted 2013-08-01 10:31:00.0)
Response from Jeremy at Thorlabs: The modulator is set to be on the negative slope when used with 0V bias. However, one would generally use a feedback loop to control the DC bias voltage to minimize DC drift. The DC bias voltage range should be -8V to 8V.
tcohen  (posted 2012-12-28 13:06:00.0)
Response from Tim at Thorlabs: This is a Mg doped LiNbO3 crystal. This material will form color centers when exposed to light at 780nm, causing higher loss. This is temporary as charge carriers become displaced and trapped in defects, forming dipoles within the crystal, and may be removed by heating. For modulation, there are suitable RF amplifiers available from companies such as SHF, Triquint, Oki, Inphi, Centellax, Picosecond, etc. We will contact you directly to discuss your application in more detail.
gnishi  (posted 2012-12-17 00:46:58.797)
Dear Sir: I have a question on the modulator. (1) Can it be used for the modulation with 780nm wavelength? If so, is there any problem with such wavelength region or anything to concern for the opearation? (2) Do you have a product for driving this modulator? Thank you for advance.
jlow  (posted 2012-10-25 11:40:00.0)
Response from Jeremy at Thorlabs: The typical Vpi is about 9-10 Volts at 30GHz. The maximum voltage is 14Vp-p for frequencies > 30GHz and about 10Vp-p for frequencies < 30GHz. Therefore the 2pi phase modulation at 30GHz exceeds our normal maximum RF power (the limiting factor is the power handling capability of the internal termination). We might be able to provide a customized option for higher RF powers at high frequencies. I will get in contact with you directly regarding this possibility.
sz292  (posted 2012-10-19 11:54:56.99)
hi, I am about to buy one 40GHz Phase Modulator, I am wondering what is the maximum phase modulation it can reach? is 2pi possible?
bdada  (posted 2012-03-21 18:02:00.0)
Response from Buki at Thorlabs to ok: Thank you for participating in our feedback forum. We have contacted you to discuss your application to make sure the LN66S modulator is suitable and to provide additional support. Please note that the "Overview" and "Specs" tab on this web page provide the specifications you requested.
ok  (posted 2012-03-18 13:12:14.0)
Whom it may concern, Sir, I am a regular purchaser of your products. Now we need some device to spread the spectrum of our optical pulse (output of semiconductor laser; 10ns-pulses with 100Hz-rep.rate and max.power near of 1W). Looks like LN66S is good for this purpose. It is a quite new issue for me, so I need to know some questions: - how much is maximum applicable RF Drive Voltage? - is negative value of RF Drive Voltage acceptable or it should be positive pulses only? - is some DC Bias necessary or we can operate without it? - could you give a definition of of Insertion Loss Variation? Do you mean optical losses? Would you be so kind as to answer it? Thank you in advance, Oleg Kulagin Senior Scientist Institute of Applied Physics
tcohen  (posted 2012-02-28 11:36:00.0)
Response from Tim at Thorlabs: The LN27 and LN66 are high-speed phase modulators. A single device imparts pure phase modulation on the optical carrier. In that sense they can be considered as frequency shifters as energy is transferred from the optical carrier into the modulation sidebands. However, this is probably not the frequency shifting that you had in mind, as all energy is transferred symmetrically to +/- sidebands around the carrier -- it is not true frequency shifting. If you want to shift the energy from the optical carrier into just one modulation sideband, this type of modulation is called single-side band suppressed carrier (SSB-SC) and the LN86 is the appropriate device for this. By proper DC biasing each of the Mach-Zehnders and phasing of the RF drive signals SSB-SC can be obtained. This acts as a true frequency shifter and the amount of frequency shift is determined by the RF modulation frequency. I have contacted you directly with some more information.
a.j.h.meskers  (posted 2012-02-28 07:40:37.0)
Dear Sir/Madam, In the specifications of product LN27S-FC is stated that this device could also shift the optical frequency. How does this exactly work? Could you give me some more information regarding this frequency shifting operation? Kind regards, Arjan Meskers
bdada  (posted 2011-11-01 12:37:00.0)
Response from Buki at Thorlabs: Thank you for your feedback. Our production team will review your suggestion. Please contact TechSupport@thorlabs.com if you would like to discuss your application further.
user  (posted 2011-10-31 12:57:03.0)
Please look at adding a SMA to SMP connector as you sell SMA cables but not SMP.
jjurado  (posted 2011-06-15 09:54:00.0)
Response from Javier at Thorlabs to jikim: Thank you very much for contacting us. At the moment, we do not have the capability to offer such a product. Free-space modulators do not have the capability to achieve 40 dB extinction ratio performance, and producing a fiber coupled LN-type modulator with free-space output would require a significant amount of development. Alternatively, we could supply a short length of PM fiber at the output pigtail, which could be then fitted with a collimator. However, we cannot commit to a 40 dB PER specification. I will contact you directly to get more details about your application.
jikim  (posted 2011-06-14 15:17:06.0)
Could you provide a customized phase modulator with a PM input (FC/APC) and a free space collimated output to obtain the linear polarization output with extinction ratio more than 40 dB and without ellipticity? In the fiber output there exists thermal effects.
jikim  (posted 2011-03-08 16:13:26.0)
Is a zero chirp intensity modulator (LN56S-FC) with a PM fiber in the output available? I would appreciate if you could send me a quotation for it.
user  (posted 2011-02-13 22:03:34.0)
jjurado  (posted 2011-02-07 10:26:00.0)
Response from Javier at Thorlabs to jikim: Thank you very much for submitting your inquiry. The LN53S does not rotate polarization. However, it functions as a variable waveplate, just like a Soleil-Babinet Compensator, when a voltage is applied to the modulator. The voltage changes the relative retardance between two orthogonal polarization modes. No intensity modulation would be observed if the input polarization is perfectly linear *and* if the linear polarization is launched on-axis to the PM input fiber. It is possible that the input polarization is not linear and/or not launched on axis to the modulator. Small misalignments between the PM fiber and LN crystal will create a small intensity modulated signal when passed through a linear analyzer. Also, use of single mode fiber at the output will allow the amplitude of the intensity modulated signal you observed to vary; just gently press on the fiber. The LN65S modulator, with an internal polarizer, will greatly suppress the undesired intensity modulation. If you need to retain the state of polarization at the output of the modulator, PM output fiber should be used. Also, this modulator can be supplied with FC/APC connectors.
jikim  (posted 2011-02-04 17:31:35.0)
I have a question on the output polarization of the phase modulator. A simple experiment has been performed. A single mode laser beam with linear polarization passes through a LN53S-FC modulator to which a sinusoidal signal at few tens of MHz is applied. The output of the modulator passes through a linear polarizer, i.e. a polarization analyzer. A photo diode (PD) observes the intensity of the transmitted beam through the polarizer. Then I could observe the same sinusoidal signal at the PD indicating that the output polarization of the modulator is varied with respect to the phase modulation. Such polarization variation of the output is absolutely not desirable in my application. When a PM fiber is used in the output port of the phase modulator instead of a SMF, is there any polarization change depending on the phase modulation? Or is there any suggestion from you to escape such a polarization change?
jjurado  (posted 2011-02-02 11:54:00.0)
Response from Javier at Thorlabs to jikim: Thank you very much for submitting your inquiry. We can certainly provide an LN65S-FC modulators with PM input and output fiber pigtails. I will contact you directly with pricing and lead time information.
jikim  (posted 2011-02-02 16:14:34.0)
Could you provide a LN65S-FC with PM fibers in both input and output ports?
Thorlabs  (posted 2010-10-19 19:23:08.0)
Response from Javier at Thorlabs to jikim: There are some slight differences between the x-cut (LN56/LN81) and z-cut (LN63/LN82) 10G intensity modulators, but the variation in the Vpi of the RF port is typically in the following range: DC to 1 GHz = 5V, 3GHz = 5.5V, 10 GHz = 7V. Note, the Vpi @ DC quoted in the specification sheet is for the DC bias port - not the RF port. The Vpi of the RF port is tested and specified with a 10Gb/s pseudo-random bit sequency (PRBS) which has a frequency spectrum that is roughly equivalent to a fixed frequency in the 3-4 GHz range, that is why the Vpi @ 3 GHz above is indicated as being equivalent to the Vpi for the 10 Gb/s PRBS.
jikim  (posted 2010-10-19 11:00:14.0)
According to the specification, the Vp is mentioned to be in the range of 3 to 8 V. Could you show the frequency dependence of such a voltage on the frequency (from 0 to 10 GHz)?
Thorlabs  (posted 2010-10-11 17:47:13.0)
Response from Javier at Thorlabs to jikim: We can certainly quote a special FC/APC version of the LN53S-FC. I will contact you directly with more information.
jikim  (posted 2010-10-11 13:02:11.0)
Is it possible to make FC/APC instead of FC/PC connector of this phase modulator (LN53S-SC)?
Thorlabs  (posted 2010-10-07 15:08:16.0)
Response from Javier at Thorlabs to Andres: I will contact you directly to discuss your application. We have to first consider your lasers wavelength and power output, among other parameters.
andres.aragoneses  (posted 2010-10-07 11:57:04.0)
Dear sir/madam I need an optic amplifier that multiplies the intensity of one laser an integer number of times (2, 3 or 4). Which is the product I need? thank you Aragoneses
Adam  (posted 2010-05-06 16:24:13.0)
A response from Adam at Thorlabs: We are working on getting these drawings on the web. In the meantime, if you need the drawings please email techsupport@THorlabs.com and we will provide with the necessary documentation.
user  (posted 2010-05-05 21:38:35.0)
can you please provide mechanical drawings for those products?
Back to Top

LN変調器(強度変調器)

Lithium Niobate Intensity Modulator Diagram
Click to Enlarge

強度変調器の光回路図。2つに分岐した光導波路(青い線)がニオブ酸リチウム(緑)の表面に形成されています。入力光は、まず変調したRFドライブ電圧、次にDCバイアス電圧の影響を受けます(図の半透明な部分)。

用途例

  • RFOF(RF-Over-Fiber)およびマイクロ波フォトニクス
  • 高速通信
  • WDM伝送

LN強度変調器はマッハツェンダ干渉計の構造を利用してデバイスの光出力を変調します(右の駆動図参照)。駆動信号変調用と変調器バイアス用の2つの電気ポートが付いています。XカットまたはZカットのタイプをご用意しています。いずれの変調器でも脱着可能なコネクタを介してRF入力します。

Xカットのデバイスは、マッハツェンダ干渉計の両アームを対称的に変調します。この対称性によって、変調出力には位相または周波数のシフト(チャープ)がありません。

Zカットのデバイスは、マッハツェンダ干渉計の2つのアームの間のプッシュプル位相シフトが異なります。この結果、出力において、強度変調だけでなく、位相および周波数シフト(チャープ)も生じます。Zカットのデバイスはマッハツェンダ構造において電界と光学場がオーバーラップするため、駆動効率が高くなります。

10 GHz変調器LNA2322は、内蔵フォトダイオードを使用して光パワーのモニタリングをすることにより変調器バイアスコントロールができるため、外部のファイバータップは必要ありません。

当社では最大40 GHzまで駆動可能な高速強度変調器も3種類ご用意しております。変調器LNA6213は、広帯域幅のデバイスで、1260 nm~1625 nmの動作範囲において40 GHzまでの変調が可能です。変調器LNA6112は、LNA6213と同様の性能をもちますが、動作範囲は1525 nm~1605 nmで、筐体長も幅105.0 mmと小さくなっております(LNA6213は135.0 mm)。変調器LNLVL-IM-Zは、動作周波数範囲のどの周波数においても最小のRF Vπ(半波長電圧)を供給します。下のグラフでは、これら変調器の動作周波数範囲における典型的な駆動電圧(左)と応答性(右)を示しています。仕様の詳細については、「仕様」タブをご参照ください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LNA2322 Support Documentation
LNA232210 GHz強度変調器、フォトディテクタ内蔵、Xカット、FC/PCコネクタ、1525 nm~1605 nm
¥486,213
7-10 Days
LNA2124 Support Documentation
LNA212410 GHz強度変調器、Zカット、FC/PCコネクタ、1525 nm~1605 nm
¥486,213
7-10 Days
LNA6213 Support Documentation
LNA621340 GHz LN強度変調器、Zカット、FC/PCコネクタ、1260 nm~1625 nm
¥808,843
7-10 Days
LNA6112 Support Documentation
LNA6112Customer Inspired! 40 GHz LN強度変調器、Zカット、FC/PCコネクタ、1525 nm~1605 nm、小型の筐体
¥680,080
7-10 Days
LNLVL-IM-Z Support Documentation
LNLVL-IM-Z低Vπ LN強度変調器、40 GHzまで、Zカット、FC/PCコネクタ、1525 nm~1605 nm
¥808,843
7-10 Days
Back to Top

LN変調器(位相変調器)

Lithium Niobate Phase Modulator Diagram
Click to Enlarge

位相変調器の光回路図。ニオブ酸リチウム(緑)上に1本の光導波路(青い線)が形成されています。入力光は、変調したRFドライブ電圧の影響のみを受けます(図の半透明な部分)。

用途例

  • 高速データ通信にけるチャープ制御
  • コヒーレント通信
  • 光センシング

LN位相変調器は1本の光導波路で構成されています(右図参照)。1本の光路のみを変調するため、最適な駆動効率が得られるよう位相変調器はすべてZカットのタイプになっています。変調器は脱着可能なコネクタを介してRF入力します。

位相変調器LN65S-FCおよびLN53S-FCは、1525 nm~1605 nmの動作範囲において10 GHzまでの変調が可能です。変調器LNP6118およびLNP6119は、1260 nm~1625 nmの動作範囲において40 GHzまでの変調が可能です。

位相変調器LNP4216とLNP4217は、動作周波数においてLNP6118とLNP6119よりも低いRF Vπ(半波長電圧)となります。変調器LNP421xの典型的な駆動電圧は10 GHzで3.5 V、30 GHzで4.6 Vで、対してLNP611xの典型的な駆動電圧は、10 GHzで7.0 V、30 GHzで8.5 Vです。こちらのデバイスは1260 nm~1625 nmの動作範囲において40 GHzまでの変調が可能です。

LNP6118、LNP6119、LNP4216、LNP4217は、高周波RFポートとは別のピンを用いて低周波変調が重畳できます(詳細については「仕様」タブおよび「ピン配列」タブをご覧ください)。

1つのモードのみが望ましい場合には、チップの異常光モードにアライメントされた偏光子が内蔵されたLN65S-FC、LNP6118、LNP4216がございます。常光モードと異常光モードの両方が必要な用途の場合、Zカットの位相変調器LN53S-FC、LNP6119、LNP4217を偏光子無しでご提供しています。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LN65S-FC Support Documentation
LN65S-FC10 GHzLN位相変調器、FC/PCコネクタ、1525 nm~1605 nm
¥434,153
Today
LN53S-FC Support Documentation
LN53S-FC10 GHzLN位相変調器、FC/PCコネクタ、偏光子無し、1525 nm~1605 nm
¥434,153
Today
LNP6118 Support Documentation
LNP611840 GHz位相変調器、FC/PCコネクタ、1260 nm~1625 nm、小型の筐体
¥680,080
7-10 Days
LNP6119 Support Documentation
LNP611940 GHz位相変調器、FC/PCコネクタ、偏光子無し、1260 nm~1625 nm、小型の筐体
¥680,080
7-10 Days
LNP4216 Support Documentation
LNP4216低Vπ位相変調器、FC/PCコネクタ、最大40 GHz、1260 nm~1625 nm
¥808,843
7-10 Days
LNP4217 Support Documentation
LNP4217低Vπ位相変調器、FC/PCコネクタ、偏光子無し、最大40 GHz、1260 nm~1625 nm
¥808,843
7-10 Days
Back to Top

IQ変調器

Lithium Niobate IQ Modulator Diagram
Click to Enlarge

IQ変調器の光回路図。4つに分岐した光導波路(青い線)がニオブ酸リチウム(緑)表面に形成されています。入力光は、まずMZIの変調RFドライブ電圧(RF1またはRF2)、次にMZIのDCバイアス電圧(DC1またはDC2)の影響を受けます(図の半透明な部分)。
  • 1本のXカットニオブ酸リチウムチップ上のデュアルおよびパラレルMZI

用途

  • QAM、QPSKおよびDQPSKエンコーディングを含むコヒーレント光通信
  • SSB-SC(Single Side Band Suppressed Carrier)伝送

LN(LiNbO3) IQ変調器はデュアル-パラレルマッハツェンダ干渉計(MZI)構造で、光の位相と振幅を変調する光透過スキームを提供します。右図のように、この変調器は独立制御可能な2つのマッハツェンダ干渉計で構成されており、それらは出力部で結合しています。また、この変調器にはバイアス電極も内蔵されており、2つのマッハツェンダ干渉計間に位相遅延を生じさせて、2つのアーム間で必要な位相制御を行うことができます。

このデバイスは、QPSKの用途において、50 Gb/sのリンク伝送レートが可能です。IQ変調器を2つ使用して多重偏光のセットアップを構築し、データ通信速度を2倍にすることもできます。例えば、LNQ4314の場合、同じ光チャンネル(波長)で100 Gb/sを達成できます。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LNQ4314 Support Documentation
LNQ431425 GHz IQ変調器、FC/PCコネクタ、1525 nm~1575 nm
¥975,837
Lead Time