TEC素子、抵抗ヒーター、サーミスター


  • Thermoelectric Coolers up to 145.8 W
  • 100 Ω, 10 kΩ, and Integrated Circuit Temperature Sensors
  • Resistive Foil, Cartridge, and Metal Ceramic Heaters
  • Thermistor Heaters Available

TH100PT

100 Ω Resistance Temperature Detector
(Not to Scale)

TH10K

10 kΩ Thermistor
(Not to Scale)

HT15W

Resistive Cartridge Heater
(Not to Scale)

AD590

Temperature Transducer
(Not to Scale)

HT10K

Flexible Resistive Foil Heater

HT19R

Metal Ceramic Heater

TECF1S

Single-Stage TEC Element

HT10KR2

Metal Ceramic Heater with Thermistor

Related Items


Please Wait

当社では熱電冷却素子(TEC素子)、抵抗ヒータ、サーミスタ、温度トランスデューサなど、様々な種類の温度制御用アクセサリをご用意しております。TEC素子は冷却と加熱の両方の機能を備えており、サーマルドリフトや熱衝撃に素早く対応することができます。これらのデバイスは精密な温度制御を包括的に行うのに適しています。加熱機能のみを必要とする場合や、室温より若干高い温度で定常状態とする場合には、抵抗ヒータが信頼性も高く、また制御もしやすい熱源になります。用途にかかわらず、温度制御システムには温度のモニタリングが欠かせません。当社のサーミスタやサーモカップルを用いれば、精密かつ正確な温度測定が可能です。

TEC素子
当社のシングルステージTEC素子では、50 °Cの高温面に対して少なくとも73 °Cの温度差を維持することができます。当社のデュアルステージTEC素子(型番TECD2)を用いると、デバイスの高温面と冷却面の温度差をより大きくすることが可能です。高温面が50 °Cの場合、真空中では冷却面を-58 °C(温度差108 °C)まで冷却することができます。デュアルステージTECの高温面と冷却面は、システムへの組み込みを容易にするために、銅でメタライズしてはんだ付けができるようになっています。

いずれのTEC素子も当社の225 Wベンチトップ型半導体レーザ用温度コントローラTED4015ならびにシャーシPRO800に対応するラックマウント型温度コントローラと組み合わせることができます。また、SMTまたはTHTパッケージの組み込み用温度コントローラとのご使用も可能です。TEC素子を温度制御に使用する場合、TEC素子の側面とリード線の電気的絶縁十分ご注意ください。

抵抗ヒータ
当社ではホイル型、カートリッジ型、金属セラミック型の抵抗ヒータをご用意しております。ホイル型抵抗ヒータHT10KならびにTLK-Hの裏面には感圧性の粘着剤が付いており、また10 kΩ NTCサーミスタがヒータに直接組み込まれています。HT15Wは小さな15 Wのカートリッジヒータで、狭い場所の加熱が必要なさまざまな用途でお使いいただけます。当社の金属セラミックヒータの形状は円形(HT19R)または正方形(HT24S、HT24S2)で、熱応答が早い点が特長です。 HT10KR1、HT10KR2とHT19R2は10 kΩのサーミスタ付きの金属セラミックヒータで、最高90 °Cに到達可能です。このような小型かつ高出力なヒータは光学部品の温度制御に適しています。こちらに掲載しているヒータはすべてヒーター温度コントローラTC300に対応します。

サーミスタ、温度トランデューサ
当社ではさらに3種類のサーミスタと温度トランデューサをご用意しております。TH10Kは10 kΩのサーミスタです。精度は1°Cで一般的なTECを用いたシステムに適しています。TH100PTは、100 Ωの白金抵抗温度計(RTD)で正の直線応答性があります。TH10KはSMTパッケージの温度コントローラMTD415Tにもご使用いただけます。AD590はIC型の温度トランスデューサで、出力電流は絶対温度に比例します。当社のサーミスタならびに温度トランスデューサAD590はすべて12 Wのベンチトップ型半導体レーザ用温度コントローラTED200Cならびにラックマウント型温度コントローラに対応します。より高温の用途には、コンスタンタンワイヤまたはマンガンワイヤが使用可能です。


Posted Comments:
图图 Xu  (posted 2023-09-21 16:25:50.77)
Which model of temperature controller is the most suitable for the TEC1.4-6 Thermo-Electric Cooler? Do you still need to purchase a TEC control power supply?
ksosnowski  (posted 2023-09-25 04:27:53.0)
Thanks for reaching out to us. The max current is 6A with a max voltage of close to 2V for this model. To get the full cooling capability of this TEC, a high power driver like our TED4015 may be necessary. If operation at a lower current/voltage point for less cooling is acceptable, then potentially our TED200C or TTC001 drivers may be suitable. We also have some OEM style TEC drivers however for lower powers than those listed here. Our ITC4000 series combination laser/TEC drivers could also drive the TEC1.4-6 to full power. Our benchtop drivers all ship with a region-specific power cable to connect to the wall and TTC001 includes its own power supply adapter as well.
Gwiwon Jang  (posted 2023-03-31 09:44:45.85)
I'm researcher in sungkyunkwan university in Korea. can HT24S2 indure vacuum condition? Can it operate in cryogenic conditions? Is it possible to -100 Celsius degrees?
cdolbashian  (posted 2023-04-03 02:17:14.0)
Thank you for contacting Thorlabs. From estimation, HT24S2 could be used in -100 C degree. We don’t currently have test data for HT24S2 to be used under vacuum conditions. Our Tech support will reach out to you directly with more discussion.
Ajinkya Punjal  (posted 2022-12-23 02:44:50.33)
Dear Sir/Ma'am, I'm Ajinkya from TIFR, Mumbai. I was looking for a TEC cooler. I wanted to ask whether this TEC is made up of magnetic material. Because I'm looking for TEC which can go to -30degC from room temperature in a 0.5T (max) magnetic field. The TEC should not disturb the magnetic field lines
ksosnowski  (posted 2022-12-28 04:09:33.0)
Thanks for reaching out to Thorlabs. There are metal contacts inside the TECs, and the current carrying wires leading up to the cooling element would produce local magnetic fields during operation. While our TECs can achieve these low temperatures in the right conditions, it is possible for them to effect the magnetic field. Potentially a liquid coolant solution would be better for eliminating this effect. I have reached out directly to discuss your application in more detail.
Jisoo Kyoung  (posted 2022-10-24 22:17:06.157)
Dear Thorlabs, In the overview page, you mention that 'Thermoelectric Cooler (TEC) Elements are Compatible with TC300 Heater Temperature Controller'. However, it seems that the TC300 Heater Controller is not compatible with any TEC. TC300 Heater Controller only compatible with Resistive heater, isn't it? Thanks.
cdolbashian  (posted 2022-10-31 01:13:10.0)
Thank you for contacting Thorlabs. TC300 is indeed compatible with TEC elements. However, at current stage of functionality, the TC300 can only drive the TEC as a heater and does not support the cooling function of a TEC. TED4015 would be a better choice if you require both active heating and cooling applications.
Yoo Changhyuk  (posted 2022-04-19 13:32:51.91)
Thank you always for your great products. In the CAD file that is provided, the parts that connect the first stage P/N legs and the second stage P/N legs are not shown. Also, I want to know which leg is a P or N type leg exactly. I wanted to post a picture to explain but unfortunately I can't in this description! I would be very thankful for your replies. Sincerely, ChanghyukYoo
jdelia  (posted 2022-05-12 08:56:05.0)
Thank you for contacting Thorlabs. I have reached out to you directly to clarify your inquiry and discuss your application further.
user  (posted 2022-02-22 11:25:33.1)
Which controller is recommended for the Metal Ceramic Heaters (with and without thermistor)? And how is it possible to connect these elements to the controller since they have just bare wire?
ksosnowski  (posted 2022-02-25 06:53:53.0)
Thanks for reaching out to us, we recommend the TC300 for controlling the resistive ceramic heaters (both with/without thermistors). You can connect to the TC300 using our cable TC200CAB10. By cutting this cable in half you can solder resistive heaters and thermistors directly to match the TC300 pinout as described on page 6 of the TC300 manual.
Gregor A.  (posted 2021-12-17 08:54:23.807)
Would be nice if for thermistors like TH10K you had an online calculator to convert between temperature and resistance :-)
YLohia  (posted 2021-12-23 01:12:22.0)
Hello, thank you for your feedback. We hope to add such functionality to the website in the future.
user  (posted 2020-07-23 08:06:27.793)
What adhesion should I use to mount TH100PT on HT24S?
YLohia  (posted 2020-07-29 10:40:35.0)
Thank you for contacting Thorlabs. Thermally conductive epoxies such as the ones listed on this page should be used: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=273. Silver-based thermal pastes would also be acceptable.
Nicolas Blando  (posted 2020-01-20 16:22:16.933)
Hello, I am confused about the use of the TEC elements. I would like to use one of these to cool down a thermally isolated metal device inside of a vacuum chamber, I believe the heat load to be in the range of 5-10W and the temperature without cooling reaches roughly 100 deg C. I was hoping you could help me figure out what the optimal solution is, thank your time and help.
nbayconich  (posted 2020-01-21 01:59:20.0)
Thank you for contacting Thorlabs. When choosing a TEC, it is important to know the heat load, or cooling capacity, of the system (how much heat must be transferred away from the device) and to match that load with a capable TEC. The TEC should be rated for a maximum heat load above that which is emitted by the system, and a sufficiently large heat sink must be attached to the hot surface. Three equations following are usually used to select a TEC element: 1) ΔT=TH-TC; 2) QH= QC +V*I; 3) TH=R*QH+Tamb; Where TH and TC represent hot and cold side temperature; QH represents output heat from the TEC; QC represents heat absorbed on the cold side, R represents the heat sink thermal resistance in your system". Output heat from the TEC will be dissipated by the heat sink in your system. QH equals 10W based on your description. From the equations above to get a rough temperate of TH and ΔT across the TEC. Then we can check the performance curve "Cooling capacity vs. ΔT" of the TEC product which information is published on the web, and find out if the TEC can meet such capacity at the calculated change in Temperature. We will reach out to you directly to discuss your application.
Antonio Benci  (posted 2019-11-14 16:09:18.803)
Is this heater vacuum compatible, down to 10^-6 mBar?
nbayconich  (posted 2019-11-15 09:36:15.0)
Thank you for contacting Thorlabs. We have not yet thoroughly tested these heating elements in vacuum conditions. Our Tech support team will reach out to you directly with more information.
Allan McPherson  (posted 2019-10-31 18:28:29.553)
Would it be possible to attach this to a curved surface? I need to find a way to cool a Ti:Sapphire crystal that may be housed in a round metal tube. There is some latitude in the diameter of the crystal and its housing, as these will both be custom parts.
YLohia  (posted 2019-11-05 08:45:12.0)
Thank you for contacting Thorlabs. The TECD2S should be mounted to a flat surface with flatness rated better than +/-0.025 mm over the entire TEC mounting area. The surface should also be clean and free of dirt, oil, scratches, and burrs. We will reach out to you directly to discuss the possibility of mounting to your particular tube.
Assaf Manor  (posted 2019-09-22 19:33:59.55)
Hello, can the HT10K be connected to an ITC 8052 if ordered without the TLK connector?
asundararaj  (posted 2019-09-27 03:24:01.0)
Thank you for contacting Thorlabs. The HT10K can be wired with the ITC8052 for heater control, but this is not the recommended process because the temperature control loop could be very unstable. The problem is that a TEC element will heat or cool depending on the polarity of the applied current, while the HT10K will heat for both polarities. The control loop in the ITC has been designed for TEC elements, i.e. it assumes that one polarity will increase the temperature and the other one will decrease it and the current changes are made accordingly. With the HT10K this is however not true and this can result in an unstable operation.
user  (posted 2019-09-12 10:36:53.647)
您好。 我是刘军,来自中国科学院国家授时中心(西安)。请问该款产品可适用于真空环境(真空度为10^-7~10^-8mbar)下吗?或者请您推荐贵公司可拟满足需求的其他型号的产品。 谢谢!
YLohia  (posted 2019-09-12 10:17:39.0)
Hello, thank you for contacting Thorlabs. A member from our Tech Support team in China (techsupport-cn@thorlabs.com) will reach out to you shortly.
Juan Antonio  (posted 2019-03-25 02:05:09.64)
Buenas noches Uso una peltier tech 3s. Me gustaría saber el COP con el que trabaja este tipo de celdas peltier Me comunico del Instituto Tecnologico deTuxtla Gutiérrez Saluds
nbayconich  (posted 2019-04-01 09:39:26.0)
Thank you for contacting Thorlabs. The COP or work efficiency is dependent on the amount of temperature change ΔT required and applied current I of the TEC element. There isn't an exact % efficiency per TEC element as the efficiency will decrease as ΔT increases. I will contact you directly with more information regarding the change in temperature, cooling capacity and the COP of these TEC elements.
regelskis  (posted 2019-02-27 12:07:03.68)
What the maximum temperature of hot side (TH) of the Single-Stage TEC Elements is allowed?
nbayconich  (posted 2019-03-28 10:30:57.0)
Thank you for contacting Thorlabs. We unfortunately do not have a maximum temperature limit of the hot plate itself for these TEC elements. The temperature of the hot plate will be typically limited by the mass of the sample being cooled, ambient temperature of the environment, etc. I would refer to the values of the max allowed temperature difference, heat load, current and voltage to make sure not to exceed either of these specifications. I will reach out to you directly to discuss your application and needs.
abushagur  (posted 2019-01-11 16:27:29.19)
I am interested buying the TEC and AD590 sensor, In our facilities we have ITC510 temperature controller, so can I used only for TEC control and not for Laser Diode? second, Do you supply also the circuit board for TEC and sensor connections? so that I just plug and play once I have my sensor mounted on the heat sink>>> My application only to have temperature controllable station..... Thanks for your support
nbayconich  (posted 2019-01-18 05:30:11.0)
Thank you for contacting Thorlabs. Yes you can use the ITC501 as a temperature controller only and do not need to use the LD current driver outputs. Several TEC elements we supply can be used with the ITC501 controller as long as the applied voltage to the TEC element you choose does not exceed the ITC501’s compliance voltage and you do not exceed the TEC element’s max heat load, max applied voltage or max temperature specifications. We do not currently provide circuit boards for these devices at the moment.
spiliot  (posted 2017-12-01 09:17:05.387)
Should I try to widen the hole of HT19R by a few mms? Will this destroy the heater?
nbayconich  (posted 2017-12-29 08:18:51.0)
Thank you for contacting Thorlabs. Drilling a larger through hole is not recommended, and we can't guarantee the specs after drilling. A larger hole might damage the ceramic heater. I will reach out to you directly with more information.
yt338  (posted 2017-07-04 11:59:42.587)
Are your TECs capable of both heating up and cooling down?
nbayconich  (posted 2017-07-11 10:35:54.0)
Thank you for contacting Thorlabs. Our TEC's are capable of both heating and cooling. The primary purpose of these TEC's is to cool but can be used to heat a device if the hot surface is in contact. For general heating purposes we recommend using our resistive heaters, thermistors and temperature transducers. I will reach out to you directly.
raphael.cohen3  (posted 2016-04-14 09:35:01.09)
I didn't find which side will be the hot and which the cold for a given voltage input? Thanks
besembeson  (posted 2016-04-14 08:56:36.0)
Response from Bweh at Thorlabs USA: The hot side is with the longer length dimensions when wired according to our specified polarity. See the following page: http://www.thorlabs.com/thorcat/4800/TEC3-2.5-SpecSheet.pdf
curtis.volin  (posted 2014-05-19 15:07:42.88)
I don't see a maximum temperature spec on HT10K or TLK-H. Can you provide this information?
myanakas  (posted 2014-05-20 09:06:31.0)
Response from Mike at Thorlabs: Thank you for your feedback. The temperature range for the HT10K and TLK-H is -32 to 100 °C (-26 to 212 °F). Based on your feedback this specification has been added to the web presentation for these parts.
user  (posted 2014-01-27 04:25:16.06)
What is the maximum operational temperature for the HT19R heater element? The heater element HT19R ships with a note saying the maximum is 180 C, while the data sheet online says 400 C.
sharrell  (posted 2014-01-27 09:43:26.0)
Response from Sean at Thorlabs: Thank you for your pointing out this inconsistency. 400 °C is the correct maximum temperature specification. It appears that the item shipped with an older, incorrect version of the spec sheet; we are working with the production team to get the items in inventory corrected now.
jlow  (posted 2012-12-11 17:01:00.0)
Response from Jeremy at Thorlabs: The leads on the HT10K are about 13".
cbrideau  (posted 2012-12-11 16:05:54.117)
How long are the leads on the HT10K? Or can you just solder on your own?
tcohen  (posted 2012-10-15 09:25:00.0)
Response from Tim at Thorlabs: Thank you for your feedback. We will add the cable as a standalone item shortly (with HIROSE connectors for mating with TC200). For immediate assistance with a compatible cable, please contact us at techsupport@thorlabs.com.
cpinyan  (posted 2012-10-10 12:58:44.463)
Would be great if Thorlabs also sold connecting cable (connector one end and alligator or other quick clips on other end) to go between Thermistor, heating elements and one of the standard temperature controllers.
Back to Top

シングルステージTEC素子


Click to Enlarge

一般的なTEC素子図
*EはTEC1.4-6のみ

下表のTECの性能仕様はTH(TECの高温面の温度)によって規定されています。 Imax はTEC素子の最大許容電流、Vmax は最大許容電圧差です。 これらの値を超えないようにしてください。 Qmax はTECが許容できる最大熱負荷、ΔTmaxは乾燥窒素ガス下でのTECの高温面と冷温面間の最大温度差です。

TECをお選びの際は、システムの熱負荷(デバイスから除去しなければならない熱量)を知り、その負荷にマッチしたTECを選ぶことが重要です。TECの最大許容熱負荷がシステムの熱負荷以上であることを確認してください。また、高温面には十分に大きなヒートシンクを取り付ける必要があります。適切な熱伝導のためには適切な熱接触が必要です。システムに適したサイズのTECを選ぶことも重要ですが、熱伝導テープや接着剤を用いてしっかりと熱伝導させることも重要です。 熱伝導効率は周囲の環境に影響されるのでご注意ください。また冷却面側に結露が発生しないように注意することも必要です。 周辺温度や湿度の大幅な変化は熱の流れを妨げる場合もあります。 適切なTECをお選びいただくために上記の事柄を考慮してください。

このページでご紹介しているTECは、TEC3-2.5、TEC3-6、TEC1.4-6を除いて、湿度や結露から保護するためすべてシリコーンで封止されています。

当社ではTEC用に3種類のコントローラをご用意しています。TECコントローラTED4015は、225 Wのベンチトップ型半導体レーザ用温度コントローラで、優れた温度安定性を有します。ラックマウント型温度コントローラも温度安定性に優れ、さらにシャーシPRO800に対応しています。OEMや特注製品、または組込みシステム向けには、OEM用のSMTまたはTHTパッケージの温度コントローラおよび温度コントローラーモジュールをご用意しております。

Item #ImaxTH = 27 °CTH = 50 °CAC ResistanceDimensions
(See Above Diagram)
Performance
Graphs 
QmaxVmaxΔTmaxQmaxVmaxΔTmax@ 30 °CABCDE
TECF1S1.2 A6.0 W7.0 V68.8 °C6.7 W7.9 V77.9 °C6.50 Ω18.0 mm
(0.71")
18.0 mm
(0.71")
18.0 mm
(0.71")
4.9 mm
(0.19")
N/Ainfo
TECF2S1.9 A9.7 W8.2 V 66.4 °C11.5 W9.1 V73.8 °C3.30 Ω18.0 mm
(0.71")
18.0 mm
(0.71")
18.0 mm
(0.71")
3.4 mm
(0.13")
N/Ainfo
TECD2S2.1 A5.1 W3.7 V65.8 °C5.7 W4.2 V74.7 °C1.50 Ω12.0 mm
(0.47")
12.0 mm
(0.47")
12.0 mm
(0.47")
3.4 mm
(0.13")
N/Ainfo
TEC3-2.52.5 A6 W3.6 V65 °C6 W4.1 V73 °C1.2 Ω @ 27 °C20.5 mm
(0.807")
16.0 mm
(0.630")
16.0 mm
(0.630")
4.0 mm
(0.159")
N/Ainfoa
TECH3S3.7 A35.3 W14.3 V64.8 °C36.2 W15.3 V74.0 °C3.80 Ω30.0 mm
(1.18")
30.0 mm
(1.18")
30.0 mm
(1.18")
3.2 mm
(0.13")
N/Ainfo
TECL43.8 A77.1 W32.3 V68.5 °C85.6 W35.6 V76.4 °C6.00 Ω50.0 mm
(1.97")
50.0 mm
(1.97")
50.0 mm
(1.97")
5.3 mm
(0.21")
N/Ainfo
TECH44.6 A44.8 W15.2 V66.3 °C48.2 W16.6 V75.7 °C2.50 Ω40.0 mm
(1.57")
40.0 mm
(1.57")
40.0 mm
(1.57")
3.8 mm
(0.15")
N/Ainfo
TEC3-65.6 A13.0 W3.6 V65 °C14.0 W4.1 V73 °C0.50 Ω @ 27 °C24.6 mm
(0.969")
20.1 mm
(0.791")
20.1 mm
(0.791")
3.91 mm
(0.154")
N/Ainfoa
TECJ65.9 A87.9 W23.5 V67.7 °C103.5 W26.2 V76.1 °C3.25 Ω40.0 mm
(1.57")
40.0 mm
(1.57")
40.0 mm
(1.57")
4.1 mm
(0.16")
N/Ainfo
TECD66.0 A14.1 W3.6 V66.0 °C15.1 W3.9 V74.5 °C0.45 Ω20.0 mm
(0.79")
20.0 mm
(0.79")
20.0 mm
(0.79")
3.8 mm
(0.15")
N/Ainfo
TEC1.4-66.0 A6 Wb1.7 Vb67 °Cb6.6 W1.9 V75 °C0.27 Ω @ 25 °C14.2 mm
(0.560")
14.2 mm
(0.560")
14.2 mm
(0.560")
3.8 mm
(0.150")
Ø5.0 mm
(Ø0.20")
infoa
TECJ87.8 A123.2 W23.6 V66.6 °C145.8 W27.8 V74.5 °C2.40 Ω40.0 mm
(1.57")
40.0 mm
(1.57")
40.0 mm
(1.57")
3.7 mm
(0.15")
N/Ainfo
TECH88.5 A75.6 W14.2 V66.2 °C84.2 W15.7 V75.0 °C1.50 Ω40.0 mm
(1.57")
40.0 mm
(1.57")
40.0 mm
(1.57")
3.5 mm
(0.14")
N/Ainfo
TECH1111.7 A101.0 W13.5 V66.4 °C110.0 W15.0 V75.5 °C1.05 Ω40.0 mm
(1.57")
40.0 mm
(1.57")
40.0 mm
(1.57")
3.2 mm
(0.13")
N/Ainfo
TECD1413.2 A31.8 W3.8 V72.0 °C34.0 W4.2 V75.0 °C0.23 Ω30.0 mm
(1.18")
30.0 mm
(1.18")
30.0 mm
(1.18")
3.9 mm
(0.15")
N/Ainfo
  • この製品の性能グラフは仕様書でご覧いただけます。青いInfoアイコンをクリックするとTECの寸法と仕様書がご覧いただけます。
  • TEC1.4-6のこれらの値は25 °Cにおける値です。

ΔTmax = 最大温度差

Qmax = TECの最大熱負荷
Vmax = 最大許容電圧

Imax = 最大許容電流
TH = 高温面の温度

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
TECF1S Support Documentation
TECF1S1.2 AシングルステージTEC素子、小型、27 °Cの加熱面時のΔT = 68.8 °C
¥2,873
Today
TECF2S Support Documentation
TECF2S1.9 AシングルステージTEC素子、小型、27 °Cの加熱面時のΔT = 66.4 °C
¥2,873
Today
TECD2S Support Documentation
TECD2S2.1 AシングルステージTEC素子、小型、27 °Cの加熱面時のΔT = 65.8 °C
¥2,233
Today
TEC3-2.5 Support Documentation
TEC3-2.52.5 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 65 °C
¥5,046
Today
TECH3S Support Documentation
TECH3S3.7 AシングルステージTEC素子、小型、27 °Cの加熱面時のΔT = 64.8 °C
¥3,030
Today
TECL4 Support Documentation
TECL43.8 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 68.5 °C
¥7,658
Today
TECH4 Support Documentation
TECH44.6 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 66.3 °C
¥3,192
Today
TEC3-6 Support Documentation
TEC3-65.6 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 65 °C
¥5,088
Today
TECJ6 Support Documentation
TECJ65.9 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 67.7 °C
¥5,743
Today
TECD6 Support Documentation
TECD6 6.0 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 66 °C
¥2,233
7-10 Days
TEC1.4-6 Support Documentation
TEC1.4-66.0 AシングルステージTEC素子、中央穴付き、25 °Cの加熱面時のΔT = 67 °C
¥6,875
7-10 Days
TECJ8 Support Documentation
TECJ87.8 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 66.6 °C
¥5,743
Today
TECH8 Support Documentation
TECH88.5 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 66.2 °C
¥3,192
7-10 Days
TECH11 Support Documentation
TECH1111.7 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 66.4 °C
¥3,988
7-10 Days
TECD14 Support Documentation
TECD14 13.2 AシングルステージTEC素子、27 °Cの加熱面時のΔT = 72 °C
¥3,192
Today
Back to Top

デュアルステージTEC素子

Dual-Stage TEC Drawing
Click for Details

デュアルステージTECの寸法図
SpecificationValueTest Conditions (Vacuum)
Imax 2.4 AQ = 0 W, ΔT = 108 °C, TH = 50 °C
Vmax9.2 VQ = 0 W, I = 2.4 A, TH = 50°C
ΔTmax108 °CQ = 0 W, I = 2.4 A, TH = 50 °C 
Qmax5.6 WI = 2.4 A, ΔT = 0 °C, TH = 50°C
TH,max200 °C-
Resistance2.664 - 3.251 Ω 25 °C Ambient Temperature
Flatness / Parallelism of Two Faces≤0.10 mm

当社のデュアルステージ熱電冷却(TEC)素子は、冷却能力を向上させたい場合にご利用いただけます。TECD2では、高温面が50 °Cのとき、高温面と冷却面の温度差を最大108 °Cにすることができます。高温面と冷却面は、はんだ付けができるようメタライズされた銅製になっています。このTECは適切にクリーニングとベークアウトを行えば、10-6 Torrの真空度で使えるように設計されています。

当社のデュアルステージTECの性能は、TECの高温面の温度(TH)の関数になります。Imaxは、 TEC素子の最大許容電流、Vmaxは最大許容電圧です。これらの値を超えないようにしてください。QmaxはTECが許容できる最大熱負荷、ΔTmaxは、真空中におけるTECの高温面と冷却面の間の最大温度差です。

TECを選ぶ際、システムの熱負荷(デバイスから除去しなければならない熱量)を知り、その負荷にマッチしたTECを選ぶことが重要です。TECの最大許容熱負荷がシステムの熱負荷以上であることを確認してください。また、十分に大きなヒートシンクを高温面に取り付ける必要があります。最適な熱伝達を実現するには適切な熱接触が必要です。システムに適したサイズのTECを選ぶのと同時に、熱伝導性のテープやグリースを用いてしっかりと熱を伝達させることが重要です。熱伝達効率は周囲の環境に影響されるのでご注意ください。また冷却面側に結露が発生しないように注意することも必要です。周辺の温度や湿度が大幅に変化すると、熱の流れを妨げる場合があります。適切なTECを選ぶ際には、これらの要因も考慮してください。

当社ではTEC用に3種類のコントローラをご用意しています。TECコントローラTED4015は、225 Wのベンチトップ型半導体レーザ用温度コントローラで、優れた温度安定性を有します。ラックマウント型温度コントローラも温度安定性に優れ、さらにシャーシPRO800に対応しています。OEMや特注製品、または組込みシステム向けには、SMTまたはTHTパッケージのOEM用温度コントローラをご用意しています。 

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
TECD2 Support Documentation
TECD22.4 AデュアルステージTEC素子、50 °Cの加熱面時のΔT = 108 °C
¥15,796
Today
Back to Top

ホイル型フレキシブル抵抗ヒータ

Item #HT10KTLK-H
Heater Power10 W/in2 (0.016 W/mm2) @ 70 °C
Heater Resistance19.7 Ωa
Sensor TypeNTC10K Thermistor
Size1" x 3" (25.4 mm × 76.2 mm)
Effective Heating Area2.23 in2 (1438.7 mm2)
Minimum Bend Radius0.5" (12.7 mm) in Thermistor Area,
0.030" (0.8 mm) in All Other Areas
Temperature Range-32 to 100 °C (-26 to 212 °F)
Connector TypeBare Wire Leads6-Pin Hirose
HR10A-7R-6S
Simplified Drawing and Pin Diagraminfo iconinfo icon
Compatible ControllerTC300b
  • 精度は±10%または±0.5 Ωのどちらか大きい値
  • 温度コントローラTC300と組み合わせて使用する場合、1つのヒータあたり1本のHiroseケーブルTC200CAB10(別売り)が必要です。
Heated lens Tube
Click for Details

ホイルヒータHT10Kで加熱されているレンズチューブSM1L10
  • サーミスタ内蔵のカプトン(ポリイミド)ホイルヒータ
  • 加熱面:25.4 mm x 76.2 mm
  • 裏側の粘着剤により簡単に取付け可能
  • ヒータの発熱密度:0.016 W/mm2

25.4 mm x 76.2 mmのホイルヒータ素子は多くの実験の用途でご使用いただけます。サーミスタを内蔵しているため、閉ループ温度制御が可能です。また裏面にはアクリル系感圧粘着剤が付いており、取り付けが容易です。どちらの製品もカプトン(ポリイミド)ヒータ素子と、10 kΩ NTCサーミスタを使用しています。

HT10Kには、お手持ちのコネクタに接続できるように、先端が裸のリード線が付いています。一方、TLK-Hは6ピンHirose製コネクタ付きケーブルTC200CAB10(別売り)を使用してヒーター温度コントローラTC300に接続できるため、ホイルヒータとコントローラ間の配線が省略できます。

どちらのホイルヒータも、右の写真のようにレンズチューブを加熱するなど、様々な使い方ができます。この写真のような使い方をする場合は、低熱伝導性アダプタを用いることでレンズチューブと他のシステムとの熱的絶縁を高めることができます。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
HT10K Support Documentation
HT10Kホイル型フレキシブル抵抗ヒータ、10 kΩサーミスタ付き
¥8,423
Today
TLK-H Support Documentation
TLK-Hホイル型フレキシブル抵抗ヒータ、10 kΩサーミスタ&6ピン Hirose製コネクタ付き
¥19,075
Today
Back to Top

カートリッジ型抵抗ヒータ

Item #HT15W
Heater Resistance27.6 Ω (Min)
41.1 Ω (Max) 
SizeØ0.122" x 1/2" (Ø3.1 mm x 12.7 mm)
Heater Power15 W @ 24 V
Maximum Temperature500 °F (260 °C)a
Connector TypeBare Leads
  • 金属ブロック内のØ3.2 mmの穴に取付けた場合。ヒータのリード線の出口はPTFEエンドキャップで絶縁されています。ヒータの本体部分は高温でも動作可能ですが、エンドキャップの温度は260 °Cを超えてはいけません。
  • 一般用途向けカートリッジ型抵抗ヒータ
  • コンパクトなØ3.1 mm × 12.7 mmの円筒形パッケージ
  • ヒータの容量:15 W(公称値)

HT15Wは15 Wのカートリッジ型抵抗ヒータで、先端が裸のリード線が付いています。ヒータ容量の24 Vにおける公称値は15 W、最高温度は260 °Cです。 当社のヒーター温度コントローラTC300が対応します。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
HT15W Support Documentation
HT15W15 W抵抗型カートリッジ型ヒータ、Ø3.1 mm x 12.7 mm
¥6,797
Today
Back to Top

金属セラミックヒータ

Item #HT19RHT24SHT24S2
Heater Power19 W @ 24 V
4.8 W @ 12V
1.2 W @ 6 V
24 W @ 24 V
6.1 W @ 12 V
1.5 W @ 6 V
Heater Resistance30 Ω ± 10%23.5 Ω ± 10%
DimensionsØ23.0 mm (Ø0.906") O.D.
Ø4.1 mm (Ø0.161") I.D.
20.0 mm (0.787") Square28.0 mm (1.102") Square
Dimensional Tolerance±0.5 mm (0.02") O.D.
±0.15 mm (0.006") I.D.
±0.5 mm (0.02")
Thickness1.3 mm (0.05")1.7 mm (0.067")
Thickness Tolerance±0.1 mm (0.004")
Lead Length50.0 mm (1.97")
Max Temperature400 °C
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
HT19R Support Documentation
HT19R19 W金属セラミックヒータ、外径23.0 mm、内径4.1 mm
¥7,201
Today
HT24S Support Documentation
HT24S24 W金属セラミックヒータ、20.0 mm x 20.0 mm
¥7,201
Today
HT24S2 Support Documentation
HT24S224 W金属セラミックヒータ、28.0 mm x 28.0 mm
¥7,201
7-10 Days
Back to Top

金属セラミックヒータ、サーミスタ付き

  • 一般用途向けの金属セラミックヒータ、10 kΩサーミスタ付き
  • HT10KR1: 10 W、外径12.4 mm
  • HT10KR2: 10 W、外径24.9 mm
  • HT19R2: 19 W、外径50.0 mm

こちらのリング状金属セラミックヒータには10 kΩサーミスタが付いています。ヒータには4本のリード線が付いており、赤の2本はヒータ用、白の2本はサーミスタ用です。Ø24.9 mmのヒータHT10KR2は、当社のネジ付きガラスセルにも対応します。全てのヒータに対して、ヒータ温度コントローラTC300をご使用いただけます。

Item #Heater Power
(@ 24 V)
Heater
Resistance
Outer
Diameter
Inner
Diameter
ThicknessaThermistor Model
(10 kΩ)
R0b,
B25/100
Lead
Length
Max
Temperature
HT10KR110 W ± 20%50 Ω ± 10%12.4 mm ± 0.3 mm
(0.49" ± 0.012")
7.2 mm ± 0.25 mm
(0.28" ± 0.010")
1.0 mm ± 0.1 mm
(0.04" ± 0.004")
TDK B57230V2103F26010 kΩ ± 1%,
3455 K ± 1%
305.0 mm +10/-0.0 mm
(12.01" +0.4/-0.0")
90 °C
HT10KR210 W ± 20%50 Ω ± 10%24.9 mm ± 0.5 mm
(0.98" ± 0.015")
20.0 mm ± 0.5 mm
(0.79" ± 0.015")
1.0 mm ± 0.1 mm
(0.04" ± 0.004")
HT19R219 W ± 20%30 Ω ± 10 %50.0 mm ± 0.5 mm
(1.968" ± 0.015")
43.0 mm ± 0.5 mm
(1.692" ± 0.015")
1.3 mm ± 0.3 mm
(0.051" ± 0.009")
  • 仕様値にはサーミスタの厚さは含まれておりません。
  • T0 = 25 °C
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
HT10KR1 Support Documentation
HT10KR110 Wリング状金属セラミックヒータ、10 kΩサーミスタ付き、外径12.4 mm、内径7.2 mm
¥9,083
Lead Time
HT10KR2 Support Documentation
HT10KR210 Wリング状金属セラミックヒータ、10 kΩサーミスタ付き、外径24.9 mm、内径20.0 mm
¥9,295
Today
HT19R2 Support Documentation
HT19R219 Wリング状金属セラミックヒータ、10 kΩサーミスタ付き、外径 50.0 mm、内径43.0 mm
¥9,476
7-10 Days
Back to Top

サーミスタ&温度トランスデューサ

AD590
Linear Current Output1 µA / K
Operating Range-55 °C to 150 °C
Power Supply Range4 to 30 V
Bottom View
(Click to Enlarge)
AD590 Bottom View
TH10Ka
Temp. Accuracy±1 °C
Dissipation Constant1.4 mW/°C
Time Constant15 s
Operating Range-50 to
150 °C
Temp. Coefficient-4.40 %/°C
  • @ 25 °C。こちらのエクセルファイルをお使いいただくと、任意の温度での抵抗の測定値、もしくは測定した抵抗値に対応する温度が計算できます。
TH100PT
Rating100 Ω @ 0 °C
Temp. Coefficient3.85 x 10-3 / K
AccuracyClass B Tolerance
(±0.3 °C @ 100 Ω)
Operating Range-70 to 400 °C
(-94 to 752 °F)
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
AD590 Support Documentation
AD590温度トランスデューサ
¥3,302
Today
TH10K Support Documentation
TH10K10 kΩサーミスタ
¥681
Today
TH100PT Support Documentation
TH100PTプラチナ製100 Ωサーミスタ
¥1,474
Today
Last Edited: Mar 17, 2014 Author: Dave Gardner