マウント無しLED


  • LEDs in the UV, Visible, or IR Spectral Ranges
  • Broadband Light Sources
  • Compatible with Versatile LED Mounts

T-1 3/4 Package

TO-39 Package with Window

TO-18 Package
with Glass Lens

TO-18R Package

Application Idea

TO-39 Package
with Glass Lens

TO-18 LED Shown
in LEDMF Mount
(Post Not Included)

TO-39 Package UV LED with Ball Lens

LEDMT1E

USB-Powered
LED Mount

TO-18 Package
with Glass Cover

TO-46 Package
with Glass Lens

TO-39 Package
UV LED with Aspheric Glass Lens

Related Items


Please Wait
Red LED Mounted in LEDMT1F Mount
Click to Enlarge
USB電源供給LEDマウントLEDMT1Fに取付けられた赤色LED630Eを、レンズマウントLMR05(/M)でポストに取付け

特長

  • TO-Can型パッケージ入りマウント無しLED
  • 幅広い中心波長のLEDをご用意(右の表をご参照ください)
    • 単色LED(250 nm~4.4 µm) 
    • 多色LED
    • 白色LED(430 ~660 nm) 
  • LEDの出力パワー範囲:6 µW~170 mW
  • 種類によって5個入りセットのLEDもご用意
  • ポスト取付け用マウント、SMネジ付きマウント、およびLEDソケットを別売りでご用意(下記参照) 
  • マウント済みLEDファイバ出力型LEDコリメータ付きLEDなどもご用意(「LEDセレクションガイド」タブをご参照ください)

発光ダイオード(LED)は小型でエネルギー効率の良い光源で、幅広い波長範囲で発光します。当社では、中心波長が250 nm~4.4 µmのマウント無しLEDをご用意しています。これらのマウント無しLEDは、T-1 3/4パッケージのほか、TO-18、TO-46、TO-39、Ø9 mm、TO-18Rなどの様々なTO-Can型パッケージにエポキシで封じられています。UV LEDの中には7.5°以下の狭い角度内に出射光を集光するボールレンズの付いたタイプがありますが、TO-Can型パッケージに納められている他のLEDには、フラットウィンドウ、ガラスカバー、ガラスレンズ、あるいはパラボリックリフレクタの付いたタイプなどがございます。

特定の波長範囲のLEDをご覧になりたい場合には、右のQuick Linksの表をご利用ください。各LEDの一般的な情報については下の仕様の表でご覧いただき、比較することができます。仕様の詳細やスペクトル特性については、型番横の赤いアイコン()をクリックしてSpec Sheetをご覧ください。

マウント無しLEDの出射光の広がり角は非常に大きいため、実験セットアップ内で使用するには、しばしばレンズを用いて出射光を集光する必要があります。非球面コンデンサーレンズ(380~2100 nm用のコーティング無し、および 350~700 nmまたは650~1050 nm用のARコーティング付きをご用意)は、中心波長405 nm~1600 nmのマウント無しLEDからの光をコリメートするのに適しています。中心波長1650 nm~4400 nmのマウント無しLEDには、出射光の広がり角を抑えるパラボリックリフレクタが付いています。 「特性評価」タブでは、こちらのページに掲載されている大部分のLEDの出射光特性を評価するための方法と機器を例示しています。 下記以外の製品をお探しの場合には当社までお問い合わせください。 

波長・色、光パワー、出射光の発散半角などについて、ご希望の仕様のLEDが無い場合は当社にご相談ください。ご希望の製品につきまして、カスタム仕様でのご提供や当社標準品としてのラインナップ化などを検討させていただきます。

発光ダイオード(LED)の特性評価方法

ここでは、こちらのページで掲載されているほとんどのLEDの発光特性を評価する部品および装置をご紹介しています。 下の写真に表示されている部品を使用した方法で測定できる仕様は以下の通りです。

  • スペクトル分布
  • スペクトル幅(FWHM)
  • 放射強度分布
  • 出射光の発散半角(Half Viewing Angle)
  • 前方放射光の光パワー
  • 総光パワー

スペクトル分布ならびにスペクトル幅(FWHM)の測定方法

ファイバ入力型の小型分光器CCS200/MがPCにつながれ、UV*域/可視域(200~1000 nm)の波長範囲のスペクトルが測定されています(近赤外域で発光するLEDはOSA202Cを使用してください)。LEDは定電流モードで動作する半導体レーザードライバLD1255Rによって駆動することができます。 LED光はf = 25.4 mmの両凸レンズLB1761により、分光器につながっているコア径Ø50 µm、SMA905コネクタ付きのマルチモードファイバーパッチケーブルに集光されます。

#Imperial
Item #
Metric
Item #
Product DescriptionQty.
Visible LEDs (245 nm - 940 nm)
1-LED (245 nm - 940 nm)a1
2bCCS200CCS200/MCompact Spectrometer,
Extended Range: 200 - 1000 nm
1
3SM1SMASMA Fiber Adapter Plate1
4M14L01Ø50 µm, SMA905 Fiber Patch Cable1
NIR LEDs (635 nm - 1650 nm)
1-LED (635 nm - 1650 nm)a1
2OSA202COptical Spectrum Analyzer,
Wavelength Range: 600 - 1700 nm
1
3SM1FCFC/PC Fiber Adapter Plate1
4M42L01Ø50 µm, FC/PC Fiber Patch Cable1
General
5S05LEDMSM05 LED Mount1
6LB1676N-BK7 Bi-Convex Lens, Ø1", f = 100.0 mm1
7SM1L03SM1 Lens Tube, 0.3" Thread Depth1
8CXY1AcXY Translating Lens Mount for Ø1" Optics1
9CP33CP33/MSM1-Threaded 30 mm Cage Plate1
10CP32CP32/MSM05-Threaded 30 mm Cage Plate1
11ER8-P4Cage Assembly Rods, 8" Long, Ø6 mm, 4 Pack1
12TR2TR50/MØ1/2" x 2" (50 mm) Stainless Steel Optical Post1
13UPH3UPH75/MUniversal Post Holder, 3" (75 mm)1
14MB612MB1530/MAluminum Breadboard, 6" x 12"
(150 mm x 300 mm)
1
15HW-KIT2HW-KIT2/M1/4"-20 (M6) Cap Screw and Hardware Kit1
  • LEDに接続されている配線は例示目的で接続されています。電気接続はお客様ご自身で行ってください。 LEDには別途電源またはドライバが必要です。 当社には対応可能なドライバLD1255RDC2200があります。
  • 左図内に写っているのはCCS200(/M)です。OSA202Cではありませんのでご注意ください。
  • 左の写真の構成では移動マウントCXY1(旧製品)が使用されています。

*尚、分光器CCS200は380 nm未満では振幅校正されていません。広帯域のパワー測定を行う場合、UV域~可視域ではシステムの相対感度に大きな違いがあるため、UV域におけるパワー読取値の信頼性が損なわれます。

 

放射強度分布ならびに発散半角の測定方法

角度に応じた強度パターンを測定するため、LEDは発光強度が最大の軸に対して垂直な軸を中心に回転させます。 ゴニオ回転を得るためにはLEDを電動回転ステージのポストに取り付け、回転軸がLEDの発光面を通るようにしてください。 ステージは、KDC101などのDCサーボモータードライバによって制御し、LEDは半導体レーザードライバLD1255Rで駆動しています。 放射光はLEDから約300 mmの場所に設置したSiフォトディテクタDET36A2、またはゲルマニウム(Ge)フォトディテクタDET30B2で検出します。 LEDの中心が回転ステージCR1/M-Z7の中心上に配置されるようLEDマウントS05LEDMをレンズチューブSM05M10に埋め込んでいます。 迷光や散乱光がディテクタに当たらないよう、LEDよりもやや短いSM1レンズチューブをディテクタに取り付けています。 2つのアイリスSM1D12Cの開口部はLEDからディテクタの光路上に置かれています。 LEDに近いアイリスの開口径は10 mm、ディテクタに近いアイリスの開口径は3 mmです。

LEDが回転すると、光強度に比例するフォトダイオードディテクタの出力が各角度位置ごとにデータ収集カードによって記録されます。 LEDは+90°から-90°まで回転します。このとき0°は、強度が最大な軸がディテクタの軸に対して平行であるときとほぼ一致します。 出射光の発散半角はディテクタの最大出力の50%に相当する角度によって決まります。

#Imperial
Item #
Metric
Item #
Product DescriptionQty.
Visible LEDs (365 nm - 1070 nm)
1-LED (365 nm - 1070 nm)a1
2DET36A2Silicon Photodetector
Wavelength Range: 350 - 1100 nm
1
NIR LEDs (850 nm - 1750 nm)
1-LED (850 nm - 1750 nm)a1
2DET30B2Germanium Photodetector
Wavelength Range: 800 - 1800 nm
1
General
3-Motorized Rotation Stage1
4CR1ACR1A/MCR1 Adapter Plate1
5KDC101K-Cube™ DC Servo Motor Controller1
6KPS201b15 V Power Supply for One K- or T-Cube™1
7RC1Rail Carrier, 1" x 1"1
8RLA0300RLA075/MDovetail Optical Rail, 3" (75 mm)1
92249-C-36BNC Coaxial Cable, BNC Male to BNC Male1
10LMR05SLMR05S/MØ1/2" Lens Mount with Internal and External SM05 Threads1
11S05LEDMSM05 LED Mount1
12SM05M10SM05 Lens Tube without External Threads, 1" Long1
13SM1D12CGraduated, Ring-Activated SM1 Iris Diaphragm2
14SM1L30SM1 Lens Tube, 3" Thread Depth4
15SM1RCSM1RC/MSM1 Series Slim Lens Tube Slip Ring1
16TR1TR30/MØ1/2" x 1" (30 mm) Stainless Steel Optical Post1
17TR2TR50/MØ1/2" x 2" (50 mm) Stainless Steel Optical Post2
18UPH2UPH50/MUniversal Post Holder, 2" (50 mm)2
19MB624MB1560/MAluminum Breadboard, 6" x 24"
(150 mm x 600 mm)
1
20HW-KIT2HW-KIT2/M1/4"-20 (M6) Cap Screw and Hardware Kit1
  • LEDに接続されている配線は例示目的で接続されています。電気接続はお客様ご自身で行ってください。 LEDには別途電源またはドライバが必要です。 当社には対応可能なドライバ LD1255RDC2200 があります。
  • 左の写真の構成では電源KPS101(旧製品)が使用されています。

 

前方放射光の光パワーの測定方法

LEDの前方放射光の総光パワーは、パワーセンサS120VC(UV/可視域波長用)またはS122C(近赤外域波長用)とパワー&エネルギーメータPM400を使用して測定しています。下の写真をご覧ください。

#Imperial
Item #
Metric
Item #
Product DescriptionQty.
Visible LEDs (245 nm - 1070 nm)
1-LED (245 nm - 1070 nm)a1
2S120VCPhotodiode Power Sensor, Si
Wavelength Range: 200 - 1100 nm
1
NIR LEDs (780 nm - 1750 nm)
1-LED (780 nm - 1750 nm)a1
2S122CPhotodiode Power Sensor, Ge
Wavelength Range: 700 - 1800 nm
1
General
3PM400Touch Screen Power and Energy Meter1
4LMR05SLMR05S/MØ1/2" Lens Mount with Internal and External SM05 Threads1
5S05LEDMSM05 LED Mount1
6SM05M10SM05 Lens Tube without External Threads, 1" Long1
7SM1A1Adapter with External SM05 Threads
and Internal SM1 Threads
1
8SM1L05SM1 Lens Tube, 0.5" Thread Depth1
9TR2TR50/MØ1/2" x 2" (50 mm) Stainless Steel Optical Post2
10UPH3UPH75/MUniversal Post Holder, 3" (75 mm)2
11MB612MB1530/MAluminum Breadboard, 6" x 12"
(150 mm x 300 mm)
1
12HW-KIT2HW-KIT2/M1/4"-20 (M6) Cap Screw and Hardware Kit1
  • LEDに接続されている配線は例示目的で接続されています。電気接続はお客様ご自身で行ってください。 LEDには別途電源またはドライバが必要です。 当社には対応可能なドライバLD1255RDC2200があります。

 

総光パワーの測定方法

LEDの総光パワーは積分球を用いて測定します。 放射光はIS200SM05PD2A、あるいはIS210Cなど、シリコン(UV域または可視域波長用)またはInGaAs(近赤外域用)のフォトダイオードと積分球を使用して検出します。 積分球は当社の半導体レーザーモジュールCPS635Rなどのレーザ光源を用いて校正することが可能です。 フォトダイオードの出力は当社のベンチトップ型フォトダイオード増幅器PDA200Cを使用して増幅ならびに測定が可能です。

#Imperial
Item #
Metric
Item #
Product DescriptionQty.
Visible LEDs (245 nm - 1070 nm)
1-LED (245 nm - 1070 nm)a1
2IS200
SM05PD2A
Ø2" Integrating Sphere,
Si Photodiode, Wavelength: 200 - 1100 nm
1
NIR LEDs (850 nm - 1750 nm)
1-LED (850 nm - 1750 nm)a1
2IS210CØ2" Integrating Sphere, InGaAs Sensor,
Wavelength Range: 800 - 1800 nm
1
General
3PDA200CBenchtop Photodiode Amplifier1
4CA2806SMA Coaxial Cable, SMA to BNC1
5S05LEDMSM05 LED Mount1
6TR2TR50/MØ1/2" x 2" (50 mm), Stainless Steel Optical Post1
7UPH3UPH75/MUniversal Post Holder, 3" (75 mm)1
8MB612MB1530/MAluminum Breadboard, 6" x 12"
(150 mm x 300 mm)
1
9HW-KIT2HW-KIT2/M1/4"-20 (M6) Cap Screw and Hardware Kit1
  • LEDに接続されている配線は例示目的で接続されています。電気接続はお客様ご自身で行ってください。 LEDには別途電源またはドライバが必要です。 当社には対応可能なドライバLD1255RDC2200があります。

Click to Enlarge

ノート型PCのUSBポートから電源供給するLED630L

USB LEDの自作
こちらのページに掲載されている多くのLEDは、一時的な使用としてUSBポートから簡単に電源供給することができます。USBポートは、バッテリの充電やデータ転送などさまざまな用途に使用できます。一般的にはPCに付いていますが、それ以外の電子機器や壁面のコンセントにも多く見られるようになってきました。このタブではLEDへの電源供給を目的としたUSBポートの利用方法について順を追って説明しています。初めに、使用するLEDのスペックシートをよくお読みください。順方向電圧の典型値が5 V以上と記載されている場合、USBポートから電源供給することはできません(このことは下記で式2を用いて説明しています)。スペックシートは製品型番横の赤いアイコン()をクリックしてダウンロードいただけます。

使用例
当社のLED525Lを使用して、USBポートからの電源供給による連続照明装置を作成することができます。この装置には100 Ωの抵抗器を使用してください。この値の算出方法については下記の式3および4をご覧ください。

注意
こちらのチュートリアルには、はんだごてを使用した電子回路の作製が含まれます。手順に従う場合、電子回路の作製に関しては事前に適切な訓練を行ってください。これ以外のLEDへの電源供給方法についてはLED用電流コントローラのページをご覧ください。

手順(クリックすると詳細をご覧いただけます)

1.ケーブルの準備USBケーブルを加工する場合、両端のコネクタには何も接続しない状態でA型オスではない方のコネクタをワイヤーカッタで切り取ります。
2.熱収縮性チューブの準備熱収縮性チューブを使用する場合は、この後の工程のためにワイヤの端から50 mm程離して装着してください。
3. 被覆の除去外側の被覆を端から約50 mmのところまで除去します。その際はワイヤに傷をつけないようにご注意ください。
4. ワイヤの加工ワイヤはシールドと、4本のさらに細いワイヤ(赤(+5 V)、黒(接地、0 V)、白、緑)で構成されています。白と緑のワイヤはデータ通信用です。
5. 接続の準備まず、赤いワイヤを25 mm程カットします。次に露出しているシールドと白および緑のワイヤを外側の被覆を除去した根元部分までカットします。赤および黒のワイヤは、はんだ付けできるように被覆を除去します。
6. 抵抗器の取り付け抵抗器の片端(抵抗器は双方向性のため、どちら側でも構いません)と赤いワイヤをはんだ付けします。この時、抵抗器のリード線と黒いワイヤの長さが同じくらいになるようにしてください。
7.LEDの取り付けLEDの正極ピンまたはアノード(場所についてはLEDのスペックシートをご覧ください)を抵抗器にはんだ付けします。
8. 回路の完成LEDの負極ピンまたはカソードを黒いワイヤにはんだ付けします。
9. 接続部の絶縁はんだの温度が下がったら、それぞれの接続部に絶縁テープを巻き付けます。
注意:露出した金属部を誤った方法で絶縁すると、回路の短絡、電気的な故障または発火につながる恐れがあります。
10. 仕上げ絶縁テープを巻きつけたワイヤをカバーし(熱収縮性チューブをワイヤに取り付けた場合はチューブを接続部までスライドさせます)、接続部がしっかり密着するまでヒートガンまたはヘアードライヤでゆっくりと熱してください。

部品リスト

部品:

  • マウント無しLED
  • USB A型オスコネクタ付きケーブル
  • 抵抗器(「抵抗器の選択」セクション参照)
  • (オプション)A型オスコネクタ付きUSB(USB-C-36)、再利用タイプ

ツール:

  • ワイヤーストリッパ
  • 絶縁テープ
  • はんだごて
  • はんだ
  • (オプション)熱収縮性チューブ
  • (オプション)ヒートガンまたはヘアードライヤ

調整可能ストリッパ AFS900は購入できます。

抵抗器の選択
USB>ポートは最大500 mA(状況によってはそれ以上も可能)の電流を提供できますが、ほとんどのLEDにとってこの電力は大きすぎます。そのため、LEDを直接USBケーブルに接続するとケーブルは数時間で焼損してしまいます。回路内でLEDの前に抵抗器を設置するとUSBポートからの電流を減少させてLEDを駆動させることができます。

用途に適した抵抗器を選択するために、まずはワイヤに電圧を与えるオームの法則から考えていきます。

V=IR (式1),

ここで、Vは電圧、Iは電流、Rは抵抗です。

この場合のVは電源からの出力電圧(Vs)とLEDの順方向電圧(V)の差となります(値については各LEDのスペックシートをご覧ください)。VfはLEDを点灯させるために必要な閾値とみなすことができます。この差を式1に置き換えると以下のようになります。

(Vs-V)=IR (2).

Iは当社のLEDの駆動電流と一致します(値については各LEDのスペックシートをご覧ください)。Rを求める式を整理すると以下のようになります。

R=(Vs-V)/I (3).

切り上げた値に最も近い抵抗器を選んでください。

LED525のスペックシートを見ると、最大DC順電流:30 mA、順方向電圧の典型値:3.0 Vaとなっています。最大電流よりも低い値でLEDを駆動し続けるため、20 mAの電流を設定します。USBポートには5 Vの電位があることがわかっているため、式3は次のようになります。

R=(Vs-V)/I = (5 V-3 V)/.02 A = 100 Ohm (4).

100 Ωの抵抗は標準サイズであるため、切り上げる必要はありません。

  • 順方向電圧の定格は50 mAです。これはパルス順電流が30 mAを超えることがあるためです。

複数のLEDへの電源供給
複数のLEDが必要な場合は、直列または並列に組み合わせることができます。直列に配置すると、LEDのVfが個数分倍増されるため、より大きなVが必要となります。LEDにとっては並列に配置した方が有利です。この構成では、電源からより多くの電流が必要ですが、個々のVfVによって満たされます。ただし並列の構成では、安全のため各LEDが個別の抵抗器を付けておくことも非常に重要です。1つのLEDが故障した場合、残りのLEDは故障したLEDの電流も負担することになり、システム全体が焼損するおそれがあるからです。


Posted Comments:
James Piao  (posted 2023-05-10 17:27:58.727)
Hello, I ordered this LED and two others. This one is much off the specs (only 0.1 mw, while 1670 nm LED emit 0.6 mw at same driving conditions). This one may be a defect one.
hchow  (posted 2023-05-12 09:16:44.0)
Dear Mr. Piao, thank you for your feedback. I am sorry to hear that your LEDs aren't performing up to your expectations. I will personally reach to you to see how we can solve this issue for you. Thank you.
user  (posted 2023-01-24 03:21:33.367)
Hi, I am working with the LED850LW. I am trying to expose the light-emitting chip itself. I have opened up the LED can with a can opener, but it appears that the chip itself is encased in some kind of epoxy. Do you know if there is any way to remove the epoxy? Or alternatively, do you know what material the epoxy is made out of? Do you also sell any LEDs where the chips are not encased in any epoxy? Thank you!
dpossin  (posted 2023-01-24 08:00:39.0)
Dear customer, Thank you for your feedback. Unfortunately since we just act as a reseller for the unmounted LEDs, we do not have any influence on the packaging. As an alternative you might have a look at our unmounted chips: https://www.thorlabs.de/thorproduct.cfm?partnumber=M850D3 I am reaching out to you to discuss this in more detail.
park yk  (posted 2022-10-06 13:39:44.843)
Hello! Korea Mr. Park Can I see the maximum output test video? The purchase Proceeded.
wskopalik  (posted 2022-10-10 07:58:31.0)
Thank you very much for your inquiry! Unfortunately, we do not have any videos showing this test. But we might have additional information which could be helpful. I will contact you directly to provide further assistance.
Sami Liedes  (posted 2022-05-17 07:46:53.313)
Hi! I have a hobby project—to measure/estimate human cone cell responses—in which I'd need to produce different combinations of visible light wavelengths (RGB only doesn't cut it) for observation with human eyes. Your LEDs in the visible light range (and light mixing rods etc) look potentially suitable, but since I'm new to optics, I thought I'd ask what you'd recommend for this use or if you'd even consider them safe for this kind of thing. The electronics side I believe I can handle. Basically, I would want to control the (approximate) luminosity of the 10-or-so different wavelength LEDs, mix the light and present it to a human eye, either via an eyepiece or on some diffuse white surface, with the goal of finding different (known) spectra that produce the same perception. Obviously I'd be interested in rather small output powers. Also, do you think a light mixing rod is suitable for this? Or do you think one of your diffusers would be good enough?
mdiekmann  (posted 2022-05-17 05:00:12.0)
Thank you for contacting us! As you selected not to be contacted, could you reach out to our Scandinavian Tech Support team at techsupport.se@thorlabs.com? We will be happy to support you with finding the best solution for this application.
Mark Sudberry  (posted 2022-03-12 00:01:15.467)
I need this wavelength 1950 in To-18 glass dome lens.
soswald  (posted 2022-03-15 06:24:03.0)
Dear Mark, thank you for your feedback. I have reached out to you directly to discuss your application and requirements in more detail.
Jakob R  (posted 2022-03-07 03:29:46.407)
What is the angular distribution of the following leds? (preferably graphed) LED1800P, LED1900P, LED2050P and LED2350P. They are not specified in the datasheet. And what is the emitter size of those leds?
hkarpenko  (posted 2022-03-14 07:55:02.0)
Dear Jakob, thank you very much for your feedback. I will contact you directly to discuss this with you.
Parvez Akhtar  (posted 2022-03-07 15:55:22.167)
what is the active area of the LED680?
mdiekmann  (posted 2022-03-10 06:27:03.0)
Thank you for your question. Unfortunately, we cannot publish this information. As you preferred not to be contacted, please reach out to your local tech support for more information.
mdiekmann  (posted 2022-03-10 06:27:03.0)
Thank you for your question. Unfortunately, we cannot publish this information. As you preferred not to be contacted, please reach out to your local tech support for more information.
SITI HAJAR AB AZIZ  (posted 2022-02-17 13:52:20.337)
Hi, I'm looking for the White LED, and now comparing to buy mounted or unmounted. Mounted LED needs LED driver to function, right? It is opposite to unmounted LED. Could you provide me details which type I should use for commercial White LED? I need the LED for illumination and data communication. Thank you.
dpossin  (posted 2022-02-18 04:50:23.0)
Dear Hajar, Thank you for your feedback. In general for every LED you need a suitable driver. We offer drivers only for our mounted LEDs. I am reaching out to you in order to discuss in more detail possible options with you.
John Coates  (posted 2022-01-09 15:40:21.833)
I am working on a team where we are developing a UV-based spectral sensor. We wish to make an addressable LED array to serve as a scanning UV source. The goal would be to make the array with LED devices that cover 250nm to 400nm with a wavelength separation of 10nm. Can Thorlabs work with us to produce such an array. This will be for a high volume medical application... initially we need to prototype the device... but eventually we would integrate this into a handheld measurement system, to be sold in quantities of 1000 to 100,000. Please advise whether Thorlabs is able to provide such a device. Our company has experience in making commercial instrumentation... company name is Lightsense...based in Tucson, AZ. Thank you... John Coates
cdolbashian  (posted 2022-01-10 12:02:27.0)
Thank you for reaching out to us at Thorlabs with this OEM request. I have reached out to you directly, and put you in contact with our OEM/Solutions team, who will discuss the specifics for your custom LED solution.
娇娇 范  (posted 2021-08-19 09:30:22.8)
咨询产品LED430L的辐射稳定性情况、寿命情况,希望获得相关数据,比如曲线图。
Rod Wesson  (posted 2021-08-02 17:10:18.22)
Hi I think the spec sheet is wrong for this device as it says on the drawing bottom view but the pins and tab appear to show top view. Also could you please confirm if there is any preference on connecting the case to either the cathode, anode or just the shield of the controller as the case on the LED340W appears to be connected to the anode according to its drawing. Thanks
dpossin  (posted 2021-08-16 09:28:11.0)
Dear Rod, Thank you for your feedback. We correct the specsheet. I am reaching out to you in order to provide further information.
sandeep kumar  (posted 2021-05-17 17:34:41.89)
We have purchased these led a year ago. I want to know, what material is used to make the LED legs (cathode and anode). It will be helpful if you can provide the details.
MKiess  (posted 2021-05-21 04:30:11.0)
Dear Sandeep, thank you very much for your inquiry. The material of the LED591E legs is SPCC steel.
Sagar S  (posted 2021-04-30 15:08:34.597)
Hi, Any reference application circuit to drive the LED1900P? The Spec sheet doesn't have the voltages information, if you could provide them - would be helpful. Thanks!
dpossin  (posted 2021-05-03 05:18:04.0)
Dear Sagar, Thank you for your feedback. The forward voltage in the QCW mode is rated to 0.5-2.5V at 200mA driving current. A suitable LED driver would be the DC2200. I am reaching out to you to further discuss this.
Ulrich Leischner  (posted 2020-12-09 10:33:50.493)
Hello We would need this device with the colors green, red, and IR (preferably with light >1050nm, this would be an 1200nm-IR-LED). Would this be possible to generate such a product? Regards Ulrich Leischner
wskopalik  (posted 2020-12-10 09:01:32.0)
Thank you very much for your inquiry! Multi-Color LEDs are unfortunately mainly designed for illumination applications and are therefore mainly available with LEDs emitting visible light. I will however check if such a custom is possible and will contact you directly.
Andrew Davies  (posted 2020-08-10 17:57:44.96)
What is the emitter size for LED528EHP, LED525L, LED528EHP, LED555L, and LED570L?
MKiess  (posted 2020-08-11 09:14:10.0)
Dear Andrew, thank you very much for your inquiry. I have contacted you directly to discuss the specifications in detail.
Yanting Lu  (posted 2020-07-07 01:38:13.14)
Ask for the curve of Forward Current vs. Forward Voltage
MKiess  (posted 2020-07-08 06:42:32.0)
This is an response from Michael of Thorlabs. Thank you very much for your inquiry. The general specifications can be found on our website at the respective product. For further information I have contacted you directly.
jason Hu  (posted 2019-12-11 14:17:16.027)
Why does 1450nm infrared LED, after lighting for a period of time (about 2 hours), reduce the luminous intensity by 30%? Is it related to the way of heat dissipation? If so, how to cool it? Which is the main cooling surface of this led?
dpossin  (posted 2019-12-12 10:18:20.0)
Dear customer, Thank you for your feedback. As the LED1450L has a power consumption of 50mW but emits an optical power of 5mW, the heat dissipation is 45mW. Therefore it is needed to introduce thermal management. I am reaching out to you in order to provide further information.
Ludovic Angot  (posted 2019-08-05 03:51:22.137)
Please review the spec sheet of your LEDRGBE RGB led, as of the date of posting it is incorrect: a 2 pins LED is shown in section 2.5 and with the wrong anode and cathode configuration. Also do you confirm that the max DC forward current (stated at 50mA) is valid for each individual RGB channels?
MKiess  (posted 2019-08-07 08:55:09.0)
This is a response from Michael at Thorlabs. Thank you very much for the feedback. You're absolutely right that this representation is incorrect. We will correct it immediately. The DC forward current of 50mA is valid for each individual RGB channels. Thank you very much for this information.
Sanket Shah  (posted 2019-07-31 11:04:30.18)
The spec sheet does not specify the electrical requirements of the LED4300P well enough, and the mechanical drawing is also unclear with the actual numbers not readable. I need to know if it can be operated at duty cycles in between the mentioned operating modes qCW & pulsed. Also missing is the maximum voltages that are acceptable.
dpossin  (posted 2019-08-29 06:58:13.0)
Hello Sanket, Thank you for your feedback! We are currently updating the manual in question to achive a better usability for our customers. We recommend using Quasi Continues Wave mode with a duty cycle 50% or 25% to obtain maximum average optical power and short Pulse modes to obtain maximum peak power. Hard CW mode is not recommended. The maximum voltage for qCW mode @ 2A is 0.8V. I hope that helps.
user  (posted 2019-04-02 12:29:08.32)
Could you please help to answer the following questions regarding LED470L. What is the raw LED size? What is the focal length of its ball lens? Is it possible to get Zemax file of LED470L? Thanks, Paul Huang Principal Optical Research Engineer Panduit Corp. 6200 W 175th St Tinley Park, IL 60477 Tel: (708) 532-1800 x 81137 Email: yuh@panduit.com
swick  (posted 2019-04-08 04:19:21.0)
This is a response from Sebastian at Thorlabs. Thank you for the inquiry. The chip size for LED470L is 1.3 x 1.3 mm. Unfortunately, we have no data for the ball lens and there is no Zemax file available for this LED. I contacted you directly to provide assistance.
kkmion  (posted 2018-08-10 10:06:17.557)
Can the Quasi-CW LED be driven by LEDD1B?
YLohia  (posted 2018-08-13 12:14:47.0)
Thank you for contacting Thorlabs. Yes, the LED2350P can be driven by the LEDD1B. You would, however, have to perform the wiring yourself. Please note that the rise/fall time of LEDD1B is ~350 us in the Trigger Mode.
lylaana  (posted 2018-01-25 09:32:05.387)
1. Optical Output Power is the total power before the lens or the power after the lens? 2. Since it’s a tiny lens, the light collimating efficiency can't be very good,how much would that collimating efficiency be about? 3. Do you have the distribution figure before collimating for LED450L,the LED chip? So I can decide how the distribution is changing,or is it worth to sacrifice the LED power? 4. What's the best you can do to achive a much better collimated LED with such conpact package? Or should I say is it possible? THANKS.
nbayconich  (posted 2018-02-16 09:42:44.0)
Thank you for contacting Thorlabs. The optical power is specified after the lens or window in these types of LED packages. We do not specify a collimating efficiency for use with an additional lens, the ability to collimate an LED will depend on the divergence and chip size of the LED however it is not possible to perfectly collimate an LED source in the same way a laser diode can be. Please see our spec sheet located below for more information about the intensity distribution vs. angle below. https://www.thorlabschina.cn/_sd.cfm?fileName=QTN015134-S01.pdf&partNumber=LED450L If you use an AR coated lens to collimate this LED your loss in power should be reduced to a minimum. I recommend using one of the condenser aspheric lenses to collimate these LED's, and if the intensity distribution is not suitable for your application a diffused surface aspheric lens may be a better option. https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_ID=5812
user  (posted 2016-12-14 10:52:12.673)
Hello, do you have a plot of the wavelenght shift for 1050E LED as function of temperature? I would like to use it down to 77K. Thanks
tfrisch  (posted 2016-12-15 12:49:59.0)
Hello, thank you for contacting Thorlabs. Unfortunately, we do not have any test data at 77K. I have doubts about whether the device may work at all at such low temperatures.
thomas.nappez  (posted 2015-11-03 18:17:18.543)
Hello, I am currently using LEDs in pulsed operation with a driver circuit closed to the figure 1 of this link: http://elib.dlr.de/64324/1/mst075402_ledpiv_willert_2010.pdf It works very well with the LED528EHP, with large increase of average optical output power. However when using the LED1450E (with adapted Vs), the output power is not increased (compared to continuous operation). Do you recommend a specific schematic for the pulse operation of InGaAs LEDs? Best regards, Thomas
besembeson  (posted 2015-11-05 11:08:31.0)
Response from Bweh at Thorlabs USA: I will look into this and follow-up with you via email.
m.examinateur  (posted 2015-10-27 23:54:16.35)
je vais utiliser le en mon projet je suis en Algérie
besembeson  (posted 2015-10-28 05:08:16.0)
Response from Bweh at Thorlabs USA: I will contact you for any questions you may have regarding these LEDs.
lcolchero  (posted 2015-01-14 21:46:05.28)
Dear Sir: In order to use this LED635L product I need even a more speficic datasheet, including pinout, SOA , pulsed operation, Temperature dissipation coefficient (ºC /W ), whether the 3 pin means optical power output fotodiode feedback posible as well as both katode - anode pins , Max switching frequncy, etc. Without this, it is useless to start designing anything , even the PCB I have in mind to design to this... Could you provide a more complete datasheet please? Many thanks in advance Luis
jlow  (posted 2015-01-20 02:37:30.0)
Response from Jeremy at Thorlabs: We will look into including more information on the LED. In the meantime, we will contact you directly to provide more information on the LED.
kevin.murphy  (posted 2014-02-17 18:13:15.003)
Hi, is there any mount, that is compatible with the S1LEDM, available for a 3mm T1 packaged LED? Thanks
cdaly  (posted 2014-02-25 04:02:07.0)
Response from Chris at Thorlabs: Thank you for your feedback. At the moment we do not have an adapter which will allow a T1 package LED to be mounted in the S1LEDM or any of our other LED mounts. I apologize for any inconvenience this may cause. We will look into adding such an adapter in the future.
mc.guacheta177  (posted 2013-10-28 08:11:58.907)
Hi, I am a researcher at the Los Andes University and I am working with the infrared spectrum. I would like to know if there is any adaptation or conditioning circuit so I can use element LED4300P. Thank you very much.
jlow  (posted 2013-10-29 14:46:00.0)
Response from Jeremy at Thorlabs: We do not have an operating circuit available for the LED. However, you can use a constant current source (we recommend that this be driven with a quasi-CW or pulsed signal) to drive this LED. I will contact you to provide more information on this.
a.andreski  (posted 2013-10-16 21:37:24.707)
Hi, Do you know what is the emitter area of the 370E (I suppose all the unmounted LEDs here are single-emitter sources)? Aleksandar
pbui  (posted 2013-10-31 04:16:28.0)
Response from Phong at Thorlabs: The emitter area of the single-emitter LED370E is 350um x 350um.
kevinserg  (posted 2013-09-06 12:05:54.977)
Good afternoon. I have some questions about LED2350P. 1)There is LED2350P Package TO-18(with Reflector) drawing on 3th page LED2350P datasheet. There is "window" on top LED2350P Package on the drawing. Word "window" is red color. But we buy 2pieces of LED2350P without any window. Why there isn`t window on top our LED2350P? Now we place an order on 1 piece of LED2350P in firm Eurolase (in Russia). Can you make LED2350P with protective window for us? Is this window option? 2) You should correct and write warning in LED2350P datasheet: "LED2350P anod is connected to the LED2350P Package!" 3) We use LED2350P in such pulse mode regime: twidth=5uS, tperiod=0.5Sec, Ipulse=1A. LED2350P is mounted on heatsink. Can I use these pulse mode parameters for LED2350P? I can`t make twidth=1uS, as recommended in LED2350P datasheet. Best regards, Sergey.
jlow  (posted 2013-09-11 15:45:00.0)
Response from Jeremy at Thorlabs: We are working on correcting the spec sheet and description issue. For #3, since you are increasing the duty cycle a bit, I would suggest decreasing the current slightly, to 0.95A.
kevinserg  (posted 2013-01-22 10:00:44.447)
Hello, please, answer my questions about LED370E and LED2350P. Sorry for my English. 1) Can LED370E be used in pulsed regime? There is no pulsed regime description in LED370E data sheet. What is Peak Pulsed Forward Current for LED370E? Are there data for forward voltage vs current and output power vs current for LED370E? 2) Are there data for forward voltage vs current and output power vs current for LED2350P? 3) What is the minimum distance between LED2350P and print circuit board? Can I mount LED2350P close to PCB? 4) Please, recommend IC (integrated circuit) for pulsed regime of LED2350P with parameters: pulse=1uS, period=500uS, pulse current=1A. 5) There is mismatch (mistake?) for pulsed regime figure of LED2350P: I peak pulsed=2A (in file "LED2350P-SpecSheet.pdf") I peak pulsed=1A (in file "1353.pdf") Where is true?
tcohen  (posted 2012-09-05 13:43:00.0)
Response from Tim at Thorlabs: The LED3100P has gone obsolete and has no direct replacement. If you are looking for the supporting documentation for this LED, this can be found by searching this product number. If you have any questions on this product, please contact us at techsupport@thorlabs.com.
user  (posted 2012-08-31 02:39:00.0)
Why can't I find the 3100 nm led?
tcohen  (posted 2012-06-22 09:16:00.0)
Response from Tim at Thorlabs: 5V will damage this diode. Please check the spec sheet for the forward voltage of this LED (~1.15V at 50mA). To use 5V you would need to include a resistor based on the desired current and forward voltage of the LED. With a forward voltage of 1.15V and 5V DC supply, you can see the series resistor needed to induce 50mA of current is just (5V-1.15V)/50mA. We recommend using a constant current source for these products. The bare LED has a half viewing angle of 15 degrees and the power is ~7.5mW. This is a divergent source and not very high power. However, care must always be taken when introducing optical elements into a beam path and any concerns of safety should be addressed with your laser safety officer.
matt968  (posted 2012-06-20 12:01:40.0)
LED1070E: Do I just apply 5V to the positive leg to get this thing to light up or are there other electrical components needed? Is the emission from this LED at 1070nm eyesafe?
tcohen  (posted 2012-04-19 09:28:00.0)
Response from Tim at Thorlabs: We do not have expected lifetime data for this LED. As always, you can prolong the life of your LED and reduce degradation by reducing the drive current and junction temperature.
paul.lauria  (posted 2012-04-17 20:15:39.0)
What is the expected lifetime of the LED470L?
sharrell  (posted 2012-02-21 11:13:00.0)
A response from Sean at Thorlabs: Thank you for your feedback on the LED780E spec sheet. We will update the spec sheet with the correct plot as soon as the data is available. In the meantime, if you needed a normalized intensity curve for the LED780E, we have one on the catalog page located at http://www.thorlabs.com/catalogpages/V21/1345.PDF. Thank you for pointing out this error.
lindsey.couvreur  (posted 2012-02-17 10:01:04.0)
There is a mistake in LED780E data sheet: Typical LED591E Spectral Distribution appears instead.
sharrell  (posted 2011-12-19 15:33:00.0)
A response from Sean at Thorlabs: Thank you for your feedback. I am sorry that you had difficulty using our feedback form, and I have forwarded your comment to our webteam. Regarding your feedback on our spec sheet plots, we will try to better integrate this information into our website, most likely using the "more info icon" you suggested.
user  (posted 2011-12-19 14:51:07.0)
Second try... your system said no key was found, would be nice to preserve the text if someone has an entry error... Comment was that it is hard to get at the spectral plot provided on the Spec Sheets, please consider using the same method that is used for the Laser Diodes, where there is a "i" icon that triggers a pop up window with more data. It would work for me if that pop up gave a representative spectral plot.
bdada  (posted 2011-12-13 19:25:00.0)
Response from Buki at Thorlabs: We are working on compiling the current vs output data for our LEDs and adding it to our website. Please email TechSupport@thorlabs.com so we can send you the data when we get it.
user  (posted 2011-12-12 18:01:38.0)
Is there data for current vs. output power for these LED's? In particular I'm interested in the LEDWE-15. Thank you.
jjurado  (posted 2011-03-10 15:47:00.0)
Response from Javier at Thorlabs to last poster: Thank you for submitting your inquiry. The UV-TOP LEDs have a rise time in the range 1-2 ns, which translates into a modulation frequency of 350 MHz to 175 MHz. Our LEDs for the visible and infrared range exhibit similar performance. Please contact Tech Support at techsupport@thorlabs.com for questions about a particular LED.
user  (posted 2011-03-09 17:18:48.0)
How fast can I modulate this LEDs? thanks
Thorlabs  (posted 2011-01-19 10:18:43.0)
Response from Javier at Thorlabs to ruelas: Thank you very much for submitting your feedback. We have reviewed the specifications and you are correct, the half-viewing angle spec for the LEDWE-50 is, in fact, 25 degrees. We will correct this information on the webpage accordingly.
ruelas  (posted 2011-01-17 21:24:19.0)
We have purchased several of the LEDWE-50 LEDs in the past and we have just noticed the viewing angle specification is inconsistent inconsistent; the webpage says the half-viewing angle is 50degrees, when it is actually 25 degrees, as specified in the catalog.
Thorlabs  (posted 2010-08-20 10:37:02.0)
Response from Javier at Thorlabs to smuehlen: Thank you for your feedback. The spectral distribution graphs are available on the spec sheets of our LEDs. I will send you a copy of the spec sheet of the LEDRGBE, which is also available here: http://www.thorlabs.com/Thorcat/16400/16400-S01.pdf
smuehlen  (posted 2010-08-19 11:09:26.0)
Are there any documents about the spectral distribution of the LEDRGBE as a function of the three applied voltages? This would be very helpful!
Thorlabs  (posted 2010-08-06 18:10:50.0)
Response from Javier at Thorlabs to sgourley: Thank you for your feedback. The typical full width at half maximum (FWHM) value for this diode is 100 nm.
sgourley  (posted 2010-08-06 16:01:16.0)
What is the bandwidth of the LED1300E? We have a replacement 1300nm design that is in the 50uW power level. We actually will need to mount in a TO-46 hole but appears it may be possible with this LED. Thanks, Sam G
Thorlabs  (posted 2010-07-29 09:25:59.0)
Response from Javier at Thorlabs to Vincent: Thank you for your feedback. We are currently looking into this for you. I will contact you directly once we have the details.
vincent.thominet  (posted 2010-07-27 07:32:40.0)
Please what are the emitting area plane relatively to the housing and the window glass and thickness? Best regards Vincent
leichner  (posted 2009-11-05 12:41:39.0)
A response from Lou at Thorlabs to abytas: The LED341 is mid UV light emitting diode. It will emit light at approx 340nm (+/- 10nm) The window of the LED is a flat window and is not a lens. For your application the LED might proof best operation to involve a laser diode driver. You will have precise control over the light being emitted (power). Im not sure how you want to use the emitting light. The light will diverge at about 15 degrees from the emitter. Typically such light would need to captured by collimation and focusing. But the type of optics required would depend on you use.
abytas  (posted 2009-11-02 10:33:41.0)
Dears, I`m asking for power deep UV LED`s for our cardiac tissue luminescense explorations. It might be Hemispherical Lens LED (T0-39) LED341 Sincere, Dr. Algimantas Bytautas Scientist Kaunas Medical University BMTI Eiveniu g. 4 LT-50161, Kaunas LITHUANIA Ph.: +37037302966 Mob: +37060608444 Fax: +37037777651 (by request)

こちらのページでは当社が販売するすべてのLEDをご覧いただけます。More [+]をクリックすると、下の各LED製品の波長をご覧いただけます。

Light Emitting Diode (LED) Selection Guide
Click Photo to Enlarge
(Representative; Not to Scale)
TypeUnmounted LEDsPigtailed LEDsLEDs in
SMT Packages
LED ArraysLED Ring LightCage-Compatible
Diffuse Backlight LED
Light Emitting Diode (LED) Selection Guide
Click Photo to Enlarge
(Representative; Not to Scale)
TypePCB-
Mounted LEDs
Heatsink-
Mounted LEDs
Collimated LEDs for MicroscopybFiber-
Coupled LEDs
c
High-Power LEDs for MicroscopyMulti-Wavelength
LED Source Optionsd
  • 25℃で測定
  • これらのコリメートLEDは、以下の顕微鏡の標準ポートならびに落射照明用ポートに取り付けることができます:Olympus BX/IX(型番末尾:-C1)、Leica DMI(型番末尾:-C2)、Zeiss Axioskop(型番末尾:-C4)、Nikon Eclipse(バヨネットマウント、型番末尾:-C5)
  • コア径Ø400 µm、NA 0.39のマルチモードファイバを使用した際の典型出力
  • 当社の多波長LED光源は、対応可能な波長のLEDを組み合わせて使用できます。
  • Leica DMI用コリメーターパッケージ(型番末尾:-C2)に使用したLEDの典型値
  • これらのLEDの最大電流時におけるコリメート出力の最小出力。コリメート用レンズは各LEDに取付け済み
  • Olympus BX/IX用コリメーターパッケージ(型番末尾: -C1)に使用したLEDの典型値
  • Zeiss Axioskop用コリメーターパッケージ(型番末尾:-C4)に使用したLEDの典型値
  • 400 nm~525 nmのスペクトルの青い領域で放射されるLEDの強度(%)
Back to Top

ボールレンズ付き紫外域(UV)LED (250~260 nm)

Item #InfoPeak
Wavelengtha
Optical
Power (Min)b
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentc
Packaged
LED250Jinfo250 nm1 mW12 nm7.5°100 mATO-39
LED255Jinfo255 nm1 mW12 nm7.5°100 mATO-39
LED260Jinfo260 nm1 mW12 nm7.5°100 mATO-39
  • 特記のない限り全ての値は典型値です。
  • 100 mAにおける値
  • 温度:25 °C
  • こちらのLEDは、パッシブ型ヒートシンク付きレンズチューブHSLT2を取付けたLEDマウントS1LEDMにマウントすることをお勧めします。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LED250J Support Documentation
LED250J250 nm LED with Ball Lens, 1 mW (Min), TO-39
¥60,110
Today
LED255J Support Documentation
LED255J255 nm LED with Ball Lens, 1 mW (Min), TO-39
¥53,518
Today
LED260J Support Documentation
LED260J260 nm LED with Ball Lens, 1 mW (Min), TO-39
¥55,199
7-10 Days
Back to Top

シングルカラー紫外域(UV)LED (255~405 nm)

Item #Wavelengtha,bOptical
Powera,c
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentd
Package
LED255W255 nm0.4 mW11 nm60°30 mATO-39
LED260W265 nm1 mW11 nm60°30 mAØ9 mm
LED275W275 nm1.6 mW11 nm60°30 mAØ9 mm
LED280W280 nm2.3 mW12 nm57°40 mATO-39
LED285J285 nme1.3 mWd11 nmc,dc,d30 mAdTO-39
LED290W290 nm1.6 mW11 nm60°30 mAØ9 mm
LED295W295 nm1.2 mW11 nm60°30 mATO-39
LED310W310 nmf1.5 mW15 nm57°40 mATO-39
LED325W2325 nmf1.7 mW11 nm57°40 mATO-39
LED340W340 nmf1.7 mW9 nm57°40 mATO-39
LED341W340 nm0.33 mW15 nm60°20 mATO-39
LED375L375 nmf1 mW10 nm20°30 mATO-18
LED370E375 nm2.5 mW10 nm19°30 mAT-1 3/4
LED385L385 nmf5 mW12 nm16°30 mATO-18
LED395L395 nmf6 mW15 nm16°30 mATO-18
LED405L405 nmf6 mW20 nm17°30 mATO-18
LED405E405 nm10 mW15 nm30 mAT-1 3/4
  • 特記のない限り全ての値は典型値です。
  • 特記のない限り中心波長を示しています。
  • 特記のない限り20 mAにおける値です。
  • 温度25 °Cにおける値です。
  • 波長の公称値
  • ピーク波長
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LED255W Support Documentation
LED255W255 nm LED with Window, 0.4 mW, TO-39
¥64,291
7-10 Days
LED260W Support Documentation
LED260W260 nm LED with Window, 1 mW, Ø9 mm
¥129,942
Lead Time
LED275W Support Documentation
LED275W275 nm LED with Window, 1.6 mW, Ø9 mm
¥55,730
7-10 Days
LED280W Support Documentation
LED280W280 nm LED with Window, 2.3 mW, TO-39
¥43,108
7-10 Days
LED285J Support Documentation
LED285J285 nm LED with Aspheric Glass Lens, 1.3 mW, TO-39
¥37,630
Lead Time
LED290W Support Documentation
LED290W290 nm LED with Window, 1.6 mW, Ø9 mm
¥36,472
7-10 Days
LED295W Support Documentation
LED295W295 nm LED with Window, 1.2 mW, TO-39
¥32,217
7-10 Days
LED310W Support Documentation
LED310W310 nm LED with Window, 1.5 mW, TO-39
¥43,108
7-10 Days
LED325W2 Support Documentation
LED325W2325 nm LED with Window, 1.7 mW, TO-39
¥43,108
7-10 Days
LED340W Support Documentation
LED340W340 nm LED with Window, 1.7 mW, TO-39
¥43,108
7-10 Days
LED341W Support Documentation
LED341W340 nm LED with Window, 0.33 mW, TO-39
¥29,132
7-10 Days
LED375L Support Documentation
LED375LCustomer Inspired! 375 nm LED with a Glass Lens, 1 mW, TO-18
¥2,051
7-10 Days
LED370E Support Documentation
LED370E375 nm Epoxy-Encased LED, 2.5 mW, T-1 3/4
¥1,841
Today
LED385L Support Documentation
LED385LCustomer Inspired! 385 nm LED with a Glass Lens, 5 mW, TO-18
¥2,084
Today
LED395L Support Documentation
LED395LCustomer Inspired! 395 nm LED with a Glass Lens, 6 mW, TO-18
¥2,100
Today
LED405L Support Documentation
LED405LCustomer Inspired! 405 nm LED with a Glass Lens, 6 mW, TO-18
¥2,178
Today
LED405E Support Documentation
LED405E405 nm Epoxy-Encased LED, 10 mW, T-1 3/4
¥2,833
Today
Back to Top

シングルカラー可視域(VIS)LED (430~680 nm)

Item #Wavelengtha,bOptical
Powera
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentc
Package
LED430L430 nm8 mW (at 20 mA)20 nm22°50 mATO-18
LED450L450 nm7 mW (at 20 mA)20 nm20°50 mATO-18
LED450LW450 nm90 mW (at 100 mA)16 nm50°150 mATO-39
LED465E465 nmd20.0 mW (at 20 mA)25 nm50 mAT-1 3/4
LED470L470 nm170 mW (at 350 mA)22 nm350 mATO-39
LED490L490 nm3 mW (at 20 mA)20 nm20°50 mATO-18
LED505L505 nm4 mW (at 50 mA)30 nm20°30 mATO-18
LED525E525 nmd2.6 mW (at 20 mA)32 nm7.5°30 mAT-1 3/4
LED525L525 nm4 mW (at 50 mA)25 nm20°30 mATO-18
LED528EHP525 nmd7.0 mW (at 20 mA)35 nm50 mAT-1 3/4
LED545L545 nm2.4 mW (at 20 mA)
8.7 mW (Pulsed, at 100 mA)
39 nm12°50 mATO-18
LED560L562 nmc0.15 mW (at 20 mA)c
0.6 mW (Max, at 50 mA)c
11 nmcc50 mATO-18
LED570L570 nm0.3 mW (at 20 mA)15 nm20°50 mATO-18
LED590L590 nm2 mW (at 50 mA)15 nm20°30 mATO-18
LED591E590 nmd2 mW (at 20 mA)20 nm10°50 mAT-1 3/4
LED595LW595 nm45 mW (at 100 mA)75 nm50°150 mATO-39
LED600L600 nm3 mW (at 50 mA)12 nm15°75 mATO-18
LED610L610 nm8 mW (at 50 mA)12 nm25°75 mATO-18
LED625E625 nme9 mW (at 20 mA)c20 nmc,f10°c,f50 mAT-1 3/4
LED625L625 nm12 mW (at 50 mA)14 nm24°75 mATO-18
LED630L630 nm16 mW (at 50 mA)14 nm22°75 mATO-18
LED635L635 nmd170 mW (at 350 mA)15 nm500 mATO-39
LED630E639 nmd7.2 mW (at 20 mA)17 nm7.5°50 mAT-1 3/4
LED645L645 nm16 mW (at 50 mA)16 nm20°75 mATO-18
LED660L660 nm13 mW (at 50 mA)14 nm18°75 mATO-18
LED670L670 nm12 mW (at 50 mA)22 nm22°75 mATO-18
LED680L680 nm8 mW (at 50 mA)16 nm20°75 mATO-18
  • 特記のない限り典型値
  • 特記のない限りピーク波長
  • 温度:25 °C
  • 中心波長
  • 波長の公称値
  • 20 mAでの駆動時
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LED430L Support Documentation
LED430LCustomer Inspired! 430 nm LED with a Glass Lens, 8 mW, TO-18
¥1,871
Today
LED450L Support Documentation
LED450LCustomer Inspired! 450 nm LED with a Glass Lens, 7 mW, TO-18
¥1,856
Today
LED450LW Support Documentation
LED450LW450 nm LED with a Flat Window, 90 mW, TO-39
¥6,899
Today
LED465E Support Documentation
LED465E465 nm Epoxy-Encased LED, 20 mW, TO-1 3/4, Qty. of 5
¥3,662
Today
LED470L Support Documentation
LED470L470 nm LED with a Glass Lens, 170 mW, TO-39
¥9,276
Today
LED490L Support Documentation
LED490LCustomer Inspired! 490 nm LED with a Glass Lens, 3 mW, TO-18
¥1,841
Today
LED505L Support Documentation
LED505L505 nm LED with a Glass Lens, 4 mW, TO-18
¥1,886
Today
LED525E Support Documentation
LED525E525 nm Epoxy-Encased LED, 2.6 mW, T-1 3/4, Qty. of 5
¥3,156
Today
LED525L Support Documentation
LED525L525 nm LED with a Glass Lens, 4 mW, TO-18
¥1,886
Today
LED528EHP Support Documentation
LED528EHP525 nm Epoxy-Encased LED, 7 mW, T-1 3/4, Qty. of 5
¥3,662
Today
LED545L Support Documentation
LED545L545 nm LED with a Glass Lens, 2.4 mW, TO-18
¥2,780
Today
LED560L Support Documentation
LED560L562 nm LED with a Glass Lens, 0.15 mW, TO-18
¥2,495
7-10 Days
LED570L Support Documentation
LED570L570 nm LED with a Glass Lens, 0.3 mW, TO-18
¥1,871
7-10 Days
LED590L Support Documentation
LED590L590 nm LED with a Glass Lens, 2 mW, TO-18
¥1,871
7-10 Days
LED591E Support Documentation
LED591E590 nm Epoxy-Encased LED, 2 mW, T-1 3/4, Qty. of 5
¥2,995
7-10 Days
LED595LW Support Documentation
LED595LW595 nm LED with a Flat Window, 45 mW, TO-39
¥4,205
7-10 Days
LED600L Support Documentation
LED600L600 nm LED with a Glass Lens, 3 mW, TO-18
¥1,871
7-10 Days
LED610L Support Documentation
LED610L610 nm LED with a Glass Lens, 8 mW, TO-18
¥1,871
Today
LED625E Support Documentation
LED625E625 nm Epoxy-Encased LED, 9 mW, T-1 3/4
¥941
7-10 Days
LED625L Support Documentation
LED625L625 nm LED with a Glass Lens, 12 mW, TO-18
¥1,871
Today
LED630L Support Documentation
LED630L630 nm LED with a Glass Lens, 16 mW, TO-18
¥1,871
Today
LED635L Support Documentation
LED635L635 nm LED with a Glass Lens, 170 mW, TO-39
¥9,276
Today
LED630E Support Documentation
LED630E639 nm Epoxy-Encased LED, 7.2 mW, T-1 3/4, Qty. of 5
¥2,214
Today
LED645L Support Documentation
LED645L645 nm LED with a Glass Lens, 16 mW, TO-18
¥1,856
Today
LED660L Support Documentation
LED660L660 nm LED with a Glass Lens, 13 mW, TO-18
¥1,821
Today
LED670L Support Documentation
LED670L670 nm LED with a Glass Lens, 12 mW, TO-18
¥1,821
7-10 Days
LED680L Support Documentation
LED680L680 nm LED with a Glass Lens, 8 mW, TO-18
¥1,821
Today
Back to Top

シングルカラー赤外域(IR)LED (750~1600 nm)

Item #Wavelengtha,bOptical
Powera
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentc
Package
LED750L750 nm18 mW (at 50 mA)23 nm11°75 mATO-18
LED760L760 nm24 mW (at 50 mA)24 nm12°75 mATO-18
LED770L770 nm22 mW (at 50 mA)28 nm12°75 mATO-18
LED780E780 nmd18 mW (at 50 mA)30 nm10°100 mAT-1 3/4
LED780L780 nm22 mW (at 50 mA)25 nm12°75 mATO-18
LED800L800 nm20 mW (at 50 mA)30 nm12°75 mATO-18
LED810L810 nm22 mW (at 50 mA)30 nm12°75 mATO-18
LED830L830 nm22 mW (at 50 mA)32 nm12°75 mATO-18
LED840L840 nm22 mW (at 50 mA)35 nm12°75 mATO-18
LED850LN850 nm100 mW (at 500 mA)55 nm3.5°500 mATO-39
LED850LW850 nm140 mW (at 500 mA)55 nm55°500 mATO-39
LED851L850 nmd13 mW (at 20 mA)40 nm10°100 mATO-18
LED870E870 nmd22 mW40 nm10°100 mAT-1 3/4
LED870L870 nm24 mW (at 50 mA)42 nm13°75 mATO-18
LED890L890 nm12 mW (at 50 mA)44 nm14°75 mATO-18
LED910L910 nm10 mW (at 50 mA)44 nm12°75 mATO-18
LED910E910 nmd12 mW (at 50 mA)35 nm100 mAØ5.5 mm
LED930L930 nm15 mW (at 50 mA)60 nm14°75 mATO-18
LED940E940 nmd18 mW50 nm10°100 mAT-1 3/4
LED970L970 nm5 mW (at 50 mA)46 nm14°75 mATO-18
LED1050E1050 nmd2.5 mW55 nm15°100 mAT-1 3/4
LED1050L1050 nm4 mW (at 50 mA)50 nm15°100 mATO-18
LED1050L21050 nmc8 mW (at 50 mA)c42 nmcc100 mAcTO-46
LED1070L1070 nm4 mW (at 50 mA)55 nm15°100 mATO-18
LED1070E1070 nmd7.5 mW (at 50 mA)80 nm15°100 mAT-1 3/4
LED1085L1085 nm5 mW (at 50 mA)50 nm15°100 mATO-18
LED1200E1200 nmd2.5 mW (at 20 mA)100 nm15°100 mAT-1 3/4
LED1200L1200 nm5 mW (at 50 mA)70 nm15°100 mATO-18
LED1300E1300 nmd2 mW (at 20 mA)100 nm15°100 mAT-1 3/4
LED1300L1300 nm3.5 mW (at 50 mA)85 nm20°100 mATO-18
LED1450E1450 nmd2 mW (at 20 mA)100 nm15°100 mAT-1 3/4
LED1450L1450 nm5 mW (at 50 mA)105 nm14°100 mATO-18
LED1550E1550 nmd2 mW (at 20 mA)100 nm15°100 mAT-1 3/4
LED1550L1550 nm4 mW (at 50 mA)120 nm15°100 mATO-18
LED1600L1600 nm2 mW (at 50 mA)130 nm15°100 mATO-18
  • 特記のない限り典型値
  • 特記のない限りピーク波長
  • 温度:25 °C
  • 中心波長
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LED750L Support Documentation
LED750L750 nm LED with a Glass Lens, 18 mW, TO-18
¥1,454
Today
LED760L Support Documentation
LED760L760 nm LED with a Glass Lens, 24 mW, TO-18
¥1,454
Today
LED770L Support Documentation
LED770L770 nm LED with a Glass Lens, 22 mW, TO-18
¥1,454
Today
LED780E Support Documentation
LED780E780 nm Epoxy-Encased LED, 18 mW, T-1 3/4, Qty. of 5
¥4,352
Today
LED780L Support Documentation
LED780L780 nm LED with a Glass Lens, 22 mW, TO-18
¥1,454
Today
LED800L Support Documentation
LED800L800 nm LED with a Glass Lens, 20 mW, TO-18
¥1,454
Today
LED810L Support Documentation
LED810L810 nm LED with a Glass Lens, 22 mW, TO-18
¥1,454
Today
LED830L Support Documentation
LED830L830 nm LED with a Glass Lens, 22 mW, TO-18
¥1,454
Today
LED840L Support Documentation
LED840L840 nm LED with a Glass Lens, 22 mW, TO-18
¥1,454
7-10 Days
LED850LN Support Documentation
LED850LN850 nm LED with a Glass Lens, 100 mW, TO-39
¥3,884
Today
LED850LW Support Documentation
LED850LW850 nm LED with a Flat Window, 140 mW, TO-39
¥3,561
7-10 Days
LED851L Support Documentation
LED851L850 nm LED with a Glass Lens, 13 mW, TO-18
¥2,263
Today
LED870E Support Documentation
LED870E870 nm Epoxy-Encased LED, 22 mW, T-1 3/4, Qty. of 5
¥2,833
7-10 Days
LED870L Support Documentation
LED870L870 nm LED with a Glass Lens, 24 mW, TO-18
¥1,444
7-10 Days
LED890L Support Documentation
LED890L890 nm LED with a Glass Lens, 12 mW, TO-18
¥1,286
Today
LED910L Support Documentation
LED910L910 nm LED with a Glass Lens, 10 mW, TO-18
¥1,286
7-10 Days
LED910E Support Documentation
LED910E910 nm Epoxy-Encased LED, 12 mW, Ø5.5 mm
¥1,377
7-10 Days
LED930L Support Documentation
LED930L930 nm LED with a Glass Lens, 15 mW, TO-18
¥1,134
7-10 Days
LED940E Support Documentation
LED940E940 nm Epoxy-Encased LED, 18 mW, T-1 3/4, Qty. of 5
¥1,871
Today
LED970L Support Documentation
LED970L970 nm LED with a Glass Lens, 5 mW, TO-18
¥1,134
Today
LED1050E Support Documentation
LED1050E1050 nm Epoxy-Encased LED, 2.5 mW, T-1 3/4
¥2,896
7-10 Days
LED1050L Support Documentation
LED1050L1050 nm LED with a Glass Lens, 4 mW, TO-18
¥3,906
7-10 Days
LED1050L2 Support Documentation
LED1050L21050 nm LED with a Glass Lens, 8 mW, TO-46
¥4,414
Today
LED1070L Support Documentation
LED1070L1070 nm LED with a Glass Lens, 4 mW, TO-18
¥3,891
7-10 Days
LED1070E Support Documentation
LED1070E1070 nm Epoxy-Encased LED, 7.5 mW, T-1 3/4
¥3,417
Today
LED1085L Support Documentation
LED1085L1085 nm LED with a Glass Lens, 5 mW, TO-18
¥3,906
Today
LED1200E Support Documentation
LED1200E1200 nm Epoxy-Encased LED, 2.5 mW, T-1 3/4
¥3,091
Today
LED1200L Support Documentation
LED1200L1200 nm LED with a Glass Lens, 5 mW, TO-18
¥4,021
Today
LED1300E Support Documentation
LED1300E1300 nm Epoxy-Encased LED, 2.0 mW, T-1 3/4
¥2,961
7-10 Days
LED1300L Support Documentation
LED1300L1300 nm LED with a Glass Lens, 3.5 mW, TO-18
¥4,037
Today
LED1450E Support Documentation
LED1450E1450 nm Epoxy-Encased LED, 2.0 mW, T-1 3/4
¥2,913
7-10 Days
LED1450L Support Documentation
LED1450L1450 nm LED with a Glass Lens, 5 mW, TO-18
¥3,936
Today
LED1550E Support Documentation
LED1550E1550 nm Epoxy-Encased LED, 2.0 mW, T-1 3/4
¥2,995
Today
LED1550L Support Documentation
LED1550L1550 nm LED with a Glass Lens, 4 mW, TO-18
¥3,791
Today
LED1600L Support Documentation
LED1600L1600 nm LED with a Glass Lens, 2 mW, TO-18
¥3,810
Today
Back to Top

シングルカラー赤外域(IR) LED (1650~4400 nm)

Item #Center
Wavelengtha,b
Optical
Powera,b
Spectral
FWHMa,b
Viewing
Half Anglea
Max Quasi-CW (qCW)
Forward Currenta
Package
LED1600P1650 nm1.2 mW qCW at 200 mA150 nm-c200 mATO-18R
LED2800W2830 - 2900 nmd,e,f300 µW qCW at 200 mAe
(2000 µW Pulsed at 1 A)g
300 nm (Min)e,f
500 nm (Max)e,f
15°200 mAe,hTO-18
LED4400P4400 nmd12 µW qCW at 200 mA800 nm (Min)
1200 nm (Max)
i250 mATO-18R
  • 温度:25 °C
  • 特記のない限り典型値
  • こちらのデータはご用意できておりません。ただし、パラボリックリフレクタ付きLEDのViewing Half Angle(視野半角)は数度程度に過ぎないとされています。
  • ピーク波長
  • 繰り返し周波数:0.5 kHz、パルス幅:1 ms、デューティーサイクル:50%
  • 150 mAで測定
  • 繰り返し周波数:0.5 kHz、パルス幅:20 μs、デューティーサイクル:1%
  • 長時間動作において
  • 200 mAでの駆動時
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LED1600P Support Documentation
LED1600P1650 nm LED with Parabolic Reflector, 1.2 mW Quasi-CW, TO-18R
¥13,468
7-10 Days
LED2800W Support Documentation
LED2800W2800 nm LED with Glass Cover, 0.3 mW Quasi-CW, 2.0 mW Pulsed, TO-18
¥16,859
Today
LED4400P Support Documentation
LED4400P4400 nm LED with Parabolic Reflector, 12 μW Quasi-CW, TO-18R
¥33,957
7-10 Days
Back to Top

マルチカラーLED

Item #Center
Wavelengtha
Optical
Powera
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentb
Package
LEDGR625 nm and 572 nm0.19 mW and 0.09 mW (at 20 mA)40 nm and 30 nm15°30 mAT-1 3/4c
LEDRY617 nm and 588 nm0.19 mW and 0.09 mW (at 20 mA)45 nm and 35 nm30°30 mAT-1 3/4c
LEDRGBE
(R, G, and B)
627.5 nm, 525 nm,
and 467.5 nm
 5.8 mW, 3.1 mW, and 6.2 mW20 nm, 36 nm, and
15 nm
25°50 mAT-1 3/4c
  • 特に注記がない限り典型値
  • 温度:25 °C
  • こちらのLEDはマルチカラー動作用にピンの数が多いため、LEDソケット8060-2はお使いいただけません。 
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LEDGR Support Documentation
LEDGR 625/572 nm Dual-Color LED, Qty. of 5
¥2,180
7-10 Days
LEDRY Support Documentation
LEDRY617/588 nm Dual-Color LED, Qty. of 5
¥2,051
Lead Time
LEDRGBE Support Documentation
LEDRGBE627.5/525/467.5 nm Tri-Color LED, Qty. of 5
¥4,843
7-10 Days
Back to Top

白色光LED

Item #Wavelength
Rangea
Optical
Powera,b
Spectral
FWHMa
Viewing
Half Anglea
Max DC Forward
Currentc
Package
LEDWE-15d430 - 660 nm13.0 mWN/A7.5°30 mAT-1 3/4
LEDW7E430 - 660 nm15.0 mWN/A7.5°30 mAT-1 3/4
LEDW25E430 - 660 nm15.0 mWN/A25°30 mAT-1 3/4
  • 特記のない限り典型値
  • 特記の無い限り20 mAにおいて
  • 温度:25 °C
  • LEDMT1Eには対応しません。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LEDWE-15 Support Documentation
LEDWE-15Epoxy-Encased White Light LED, 13.0 mW, 7.5° Half Viewing Angle, Qty. of 5
¥1,496
7-10 Days
LEDW7E Support Documentation
LEDW7EEpoxy-Encased White Light LED, 15.0 mW, 7.5° Half Viewing Angle, Qty. of 5
¥1,200
Today
LEDW25E Support Documentation
LEDW25EEpoxy-Encased White Light LED, 15.0 mW, 25° Half Viewing Angle, Qty. of 5
¥1,245
Today
Back to Top

USB電源供給LEDマウント

Item #LEDMT1ELEDMT1F
Input Voltage (VI)5 V
Resistance51 Ω62 Ω
Compatible LED PackageT-1 3/4a
Mounting ThreadExternal SM05 (0.535"-40)
Outer DimensionsØ0.70" x 0.83"
Compatible LEDsbLED370E
LED405E
LED465E
LED528EHP
LED780E
LED870E
LED940E
LED1050E
LED1070E
LED1200E
LED1300E
LED1450E
LED1550E
LED525E
LED591E
LED625E
LED630E
LEDW25E
LEDW7E

  • 3ピン仕様のLEDとLEDWE-15には対応しません。
  • 抵抗の低いマウントに対応するLEDは通常、抵抗の高いマウントにも対応しますが、光出力は下がります。

Click for Details
LEDMT1Eの図面

Click to Enlarge
LEDMT1Eの電気回路図
  • T-1 3/4パッケージLED用USB電源供給マウント
  • 51 Ωまたは62 Ωの電流制御抵抗内蔵
  • SM05外ネジ
  • LED電源モジュール用Micro-B - Type-A変換USBケーブルが付属

こちらのUSB電源駆動LEDマウントは、T-1 3/4パッケージのマウント無しLED用で電源供給とLED取付けソケットの両方が付いたコンパクトな筐体です。様々な電流要件に対応するため、51 Ωまたは62 Ωの電流制御抵抗付きのLEDマウントをご用意しております。モジュールは筐体背面のmicro-B USBポートからUSB電源、または付属のUSB-Micro-B USBケーブルにつないでPCより電源が供給されます。筐体にはSM05外ネジが付いており、ケージシステムやSM05ネジ付き部品が取り付けられます。

LEDを取り付ける際には、筐体に刻印されている長さを参考にリード線を切断してください(右の図をご覧ください)。LEDは、(+)にアノード、(-)にカソードを挿してください。LEDを取り付ける際に過度の力を加えると電極リード線が曲がる恐れがあります。

こちらの電源供給マウントは抵抗値と入力電圧が固定です。LEDに適したマウントを選ぶことでLEDへのダメージが最小限に抑えられます。一般的に抵抗値の低いマウントは順電流を増加させ、それに比例してLEDの光出力が増加します。しかし順電流がLEDの最大電流を超えると、LEDの恒久的なダメージの原因になる場合があります。LED使用時に推奨される最小抵抗値(R)は、下記の式を用いて求められます。

マウントの入力電圧(VI,Source)は5V、そして典型的な順電圧(VF,Typ) ならびに最大順電流(IF,Max)は、各LEDによります。これらの値についてはLEDの仕様をご覧ください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LEDMT1E Support Documentation
LEDMT1ECustomer Inspired! USB電源供給LEDマウント、51 Ω
¥7,180
Today
LEDMT1F Support Documentation
LEDMT1FCustomer Inspired! USB電源供給LEDマウント、62 Ω
¥7,180
Today
Back to Top

LEDマウント

LED Mount Compatibility
Item #LED PackageExternal
Mounting
Threads
Compatible
Spanner Wrenches
MountLED
Retaining Ring
LEDMFTO-18, TO-18R,
and T-1 3/4a 
Smooth BoreN/AN/A
S05LEDMTO-18, TO-39,
TO-46, and
T-1 3/4a
SM05
(0.535"-40)
SPW603
SPW801
SPW301
SPW801
S1LEDMSM1
(1.035"-40)
SPW909
SPW801
  • LEDRGBE、LEDGR、LEDRYは、ピンの数が多く、固定リングによるLEDの位置固定ができないため、LEDMF、S05LEDM、S1LEDMにはお使いいただけません。

LEDマウントLEDMFは、付属のアダプターリング(TO-18用はØ4.7 mmアダプタ、T-1 3/4用はØ5 mmアダプタ)の1つを使ってT-1 3/4やTO-18パッケージを保持する設計となっております。また、TO-18Rパッケージは直接保持することが可能です。LEDはマウント上部にあるキャップスクリュを2 mm六角レンチで締め付けることによって固定されます。L字型のマウントにはM4キャップスクリュが使用できるザグリ穴(貫通穴)があるので LEDMFをØ12 mmまたはØ12.7 mmポストに取り付けることができます。

LEDマウントS05LEDMにはSM05ネジ加工、S1LEDMにはSM1ネジ加工が施されています。 こちらは、付属のアダプターリングを用いて当社のTO-18、TO-39、TO-46、T-1 3/4パッケージを保持する設計となっております。外ネジ加工なので様々なSM05またはSM1ネジ対応オプトメカニクス部品に適用できます。

固定リングをマウントにねじ込む、またはマウントを他の部品に結合する際には当社のスパナレンチのご使用をお勧めいたします。 調整機能付きスパナレンチSPW801は、LEDの固定リングをマウントにねじ込む際やマウントを他の部品に結合する際に使用できます。 また右の表には各マウントに対応可能なスパナレンチが記載されています。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
LEDMF Support Documentation
LEDMF汎用LEDマウント、TO-18、TO-18R、T-1 3/4用
¥4,352
Today
S05LEDM Support Documentation
S05LEDMCustomer Inspired! SM05ネジ付きLEDマウント、TO-18、TO-39、TO-46、T-1 3/4用
¥5,210
Today
S1LEDM Support Documentation
S1LEDMSM1ネジ付きLEDマウント、TO-18、TO-39、TO-46、T-1 3/4用
¥5,283
Today
Back to Top

LEDソケット

Specifications
ConductorBeryllium Copper (BeCu)
InsulatorPTFE
Compatible Lead Diameters0.016" (0.41 mm)
Compatible Lead Lengths≤0.22" (5.6 mm)
Outer Diameter5.8 mm (0.23")
Substrate Thickness6.9 mm (0.27")
8060-2

当社のLED用ソケットは、2ピンタイプのLEDにお使いいただけます。このソケットは、Ø0.41 mm、長さ5.6 mm以内のピンに適合するサイズで、ベリリウム銅金メッキ仕上げでRoHSに準拠しています。 色は製造ロットにより異なり、白、オフホワイト、黒、薄茶になります。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
8060-2 Support Documentation
8060-2LED用ソケット、2ピン
¥1,760
7-10 Days