手動フィルターホイール、NDフィルター付属


  • Convenient Lab Table Organizers for Ø1" (Ø25 mm) Optics
  • Modular Design Allows for Ease of Interchangeability
  • Precise Mechanical Indexing

Filters Are
Included

FW1AND

FW2AND

1.37"
(34.8 mm)

2.38"
(60.3 mm)

Related Items


Please Wait
Filter Damage Thresholds
FiltersTypeDamage Threshold
OD 0.2Pulsed10 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.456 mm)
OD 1.0Pulsed10 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.504 mm)
OD 2.0CWa,b12 W/cm (532 nm, Ø1.0 mm)
OD 4.0Pulsed5 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.340 mm)
  • ビームのパワー密度はW/cmの単位で計算してください。このパワー密度の単位(単位長さあたりのパワー)が長パルスおよびCW光源に対して最も適した測定量である理由については、「損傷閾値」タブをご参照ください。
  • こちらのフィルタのCW光試験では、試験対象箇所に60秒の照射を行っています。

特長

  • シングルならびにデュアルフィルターホイール
  • NDフィルターセット付属
  • ポストに取り付け可能
  • Ø25 mm~Ø25.4 mm(Ø1インチ)光学素子ならびにSM1ネジ付き部品に対応

フィルターホイールアセンブリFW1ANDならびにFW2ANDは、吸収型NDフィルターセット付きの便利なマウントです。精密なインデックス(角度割り出し)機構による精密なアライメントと位置保持力により優れた再現性が得られます。ユニットのベースプレートにはM6ネジ用貫通スロットが2つあり、光学テーブルやブレッドボードへの取り付けも柔軟に行えます。

モジュール設計のため、フィルターホイールの交換や、ベースやポストへの取り付けが簡単です。当社では2種類のフィルターホイールをご用意しています。どちらもフィルターセット付きで、自由な組立や構成が可能です。FW1ANDは6ポジションホイールが1枚で、5枚のNDフィルタが付属します。FW2ANDは6ポジションホイールが2枚で、10枚のNDフィルタが付属します。FW2ANDでは、10枚のNDフィルタを2つのホイールアセンブリに取り付けて組み合わせることにより、光強度を広いダイナミックレンジ(1-108)にわたって変えることができます。各モデルに付属するNDフィルタは下記の通りです。

Dual Filter Wheel Optical Density and
Transmission (%) Conversion Tablea
OD0b0.20.30.40.50.61.02.03.04.0
0b10063.1050.1239.8131.6225.1210.001.000.100.01
0.263.10-31.6225.1219.9515.856.310.630.066E-3
0.350.1231.62-19.9515.8512.595.010.500.055E-3
0.439.8125.1219.95-12.5910.003.980.400.044E-3
0.531.6219.9515.8512.59-7.943.160.320.033E-3
0.625.1215.8512.5910.007.94-2.510.250.033E-3
1.010.006.315.013.983.162.51-0.100.011E-3
2.01.000.630.500.400.320.250.10-1E-31E-4
3.00.100.060.050.040.030.030.011E-3-1E-5
4.00.016E-35E-34E-33E-33E-31E-31E-41E-51E-6
  • 2枚のNDフィルタを重ねたときの全透過率(%)を求めるには、まず1枚目のNDフィルタのOD値を見つけ、次に2枚目のフィルタのOD値と一致するセルを見つけます。このセルの値が全透過率(%)となります。
  • 0のOD値はNDフィルタの入っていないポートに対応します。

各フィルターポートはSM1内ネジ付きで、固定リングSM1RRを用いると厚さ4.0 mmまでのØ25 mm~Ø25.4 mm(Ø1インチ)光学素子を取り付けられます(各フィルタの設置位置毎に1つの固定リングが付属しています)。4.0 mmを超える厚さの光学素子は、SM1レンズチューブに取り付けることでフィルターホイールの前面側に取り付けられます。また、これらのフィルタの配置は簡単に変えることができます。なお、フィルタはホイールに装着せずに出荷されます。

光学濃度(OD)の計算
光学濃度(OD)は光学フィルタによりもたらされる減衰率、つまり入射ビームの光パワーをどれだけ減少させるかを示しています。光学濃度(OD)は透過率Tの関数として次の方程式で表されます。

Optical Density Equation

Tは0から1の間の値です。光学濃度の高いNDフィルタ(吸収型)を選択した場合、入射光の吸収率は高く、透過率は低くなります。透過率を高く、吸収率を低くするためには、低い光学濃度のNDフィルタが適切と言えます。例えば、光学濃度2のフィルタでは透過率が0.01であり、フィルタは入射ビームのパワーを1%まで減衰させるという結果になります。当社のNDフィルタの透過率のデータは、パーセント(%)で表示されています。

フィルターホイールFW2ANDのように2枚のNDフィルタを重ねて使用する場合、光学濃度は2枚のフィルタのOD値を加算した値になります。従ってOD 0.3のフィルタをOD 2.0のフィルタの前に置いた場合、光学アセンブリ全体のOD値は2.3になります。よって全体の透過率は10-2.3(約0.5%)となります。右の表を使用すると、重ねて配置した2枚のフィルタのOD値の和による透過率を求めることができます。

Filter Damage Thresholds
Optical DensityTypeDamage Threshold
0.2Pulsed10 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.456 mm)
1.0Pulsed10 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.504 mm)
2.0CWa,b12 W/cm (532 nm, Ø1.0 mm)
4.0Pulsed5 J/cm2 (532 nm, 10 ns, 10 Hz, Ø0.340 mm)
  • ビームのパワー密度はW/cmの単位で計算します。 このパワー密度の単位(単位長さあたりのパワー)が長パルスおよびCW光源に対して最も適した測定量である理由については、下記の「CWレーザと長パルスレーザ」をご覧ください。
  • こちらのフィルタのCW光試験では、試験対象箇所に60秒の照射を行っています。

当社のNDフィルタの損傷閾値データ

右の仕様は当社のNDフィルタの損傷閾値データです。損傷閾値の仕様は光学濃度が同じであればフィルタのサイズにかかわらず同じです。

 

レーザによる損傷閾値について

このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。

テスト方法

当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。

初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。

LIDT metallic mirror
上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。
LIDT BB1-E02
Example Test Data
Fluence# of Tested LocationsLocations with DamageLocations Without Damage
1.50 J/cm210010
1.75 J/cm210010
2.00 J/cm210010
2.25 J/cm21019
3.00 J/cm21019
5.00 J/cm21091

試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。

CWレーザと長パルスレーザ

光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。

パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。

Linear Power Density Scaling

線形パワー密度におけるLIDTに対するパルス長とスポットサイズ。長パルス~CWでは線形パワー密度はスポットサイズにかかわらず一定です。 このグラフの出典は[1]です。

Intensity Distribution

繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。

ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。

  1. レーザの波長
  2. ビーム径(1/e2)
  3. ビームのおおよその強度プロファイル(ガウシアン型など)
  4. レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)

ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。

ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。

次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。

CW Wavelength Scaling

この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。

パルスレーザ

先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。

パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。

Pulse Durationt < 10-9 s10-9 < t < 10-7 s10-7 < t < 10-4 st > 10-4 s
Damage MechanismAvalanche IonizationDielectric BreakdownDielectric Breakdown or ThermalThermal
Relevant Damage SpecificationNo Comparison (See Above)PulsedPulsed and CWCW

お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。

Energy Density Scaling

エネルギ密度におけるLIDTに対するパルス長&スポットサイズ。短パルスでは、エネルギ密度はスポットサイズにかかわらず一定です。このグラフの出典は[1]です。

  1. レーザの波長
  2. ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
  3. レーザのパルス幅
  4. パルスの繰返周波数(prf)
  5. 実際に使用するビーム径(1/e2 )
  6. ビームのおおよその強度プロファイル(ガウシアン型など)

ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。

次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。

Pulse Wavelength Scaling

 

波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。

ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。

次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。

Pulse Length Scaling

お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1997).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).


Posted Comments:
Shree Krishnamoorthy  (posted 2021-11-10 13:38:51.887)
Dear Thorlabs team, I was looking for characterization of the filters in NIR region (1100-2500 nm). could you comment on the OD for FW1AND filterwheel filters for these?
YLohia  (posted 2021-11-12 04:16:06.0)
Hello Shree, the extended range OD for the FW1AND can be downloaded by clicking on the hyperlinked nominal OD values on the Overview tab for this wheel and then selecting the download link for the raw data transmission/OD values as an Excel file.
Dimitri Kromm  (posted 2020-07-09 11:21:31.56)
Dear Thorlabs-Team, I'm generally a big fan of the fact that you have SolidWorks models of most of your components. However, I would recommend to update the model of the FW1AND as the point of origin, the planes and the position of the "ND-wheel" are not useful, or at least I don't see how they would be. I would suggest to rotate the wheel as shown in the pdf such that the height from bottom to the used window becomes 55mm, then either put the origin into that window or at least have a logical position in regards to the beam/whole position. That would make the usage and incorporation into other setups easier. Please consider my feedback on this. Thanks! Kind regards, Dimitri
llamb  (posted 2020-07-15 04:22:24.0)
Hello Dimitri, thank you for your feedback. We will certainly consider updating the FW1AND's SolidWorks file's point of origin to be more versatile in other assemblies.
hmendez  (posted 2018-03-06 11:22:58.383)
I please need detailed info to ensure my laser will not damage the ND filters: ND 0.2 1.0 and 3.0 in order to calculate an 1w CW laser 1,5mm diameter could work fine, without burning the ND filter. (I mean 500w/cm2 for the ND1.0 is too much power). thanks in advance. hm
llamb  (posted 2018-03-12 05:07:13.0)
Hello, thank you for contacting Thorlabs. The damage threshold will also depend on the wavelength of your light. While we do not have formal testing for damage threshold, I will reach out to you directly to help estimate.
werner.engel  (posted 2016-05-12 18:57:16.537)
It would be nice to get a suggestion for filling the FW2AND with the filters in the right position. I have them in front of me and now I have to start calculating ... :-(
besembeson  (posted 2016-05-12 03:18:01.0)
Response from Bweh at Thorlabs USA: Each of the wheels can be rotated independently so it is not very relevant where they are positioned except for the two with OD of 4, that must be on each wheel to get the maximum attenuation of 10^-8. You may for example consider having 0.2, 0.3, 0.4, 0.5, 4 on the first wheel and then 0.6, 1.0, 2.0, 3.0, 4.0 on the second wheel. We will add suggestive notes on the website regarding this.
tcohen  (posted 2012-12-05 10:42:00.0)
Response from Tim at Thorlabs to Arunasish: The performance of these filters can be viewed by clicking on the hyperlinks in the Overview tab. These absorptive ND filters have extremely high OD in UV and will not be suitable with a 230nm source. We have reflective UVFS substrates which can be used with your source at http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6106. As the OD typically increases towards your wavelength, consulting the typical OD spectrum, all of which are available on the ‘Graphs’ tab, would be necessary.
arunasis  (posted 2012-11-30 16:20:21.533)
Hi, I have like to know some specific information about the ND filter (FW2AND). Does this filter wheel work in the UV region (upto 230 nm) and what is the maximum power that is suitable for the this wheel. (I mean beyond which power the coatings are vulnerable to be damaged?) Looking forward to hearing back from you. Thanks, Arunasish
Greg  (posted 2011-01-24 11:20:07.0)
A response from Greg at Thorlabs: Thank you for your feedback! I have added transmission data for each of the filters as well as links to support documents for these filters on the Overview tab. To find the information, just click on the neutral density you are interested in and a window will pop up.
user  (posted 2011-01-24 10:42:32.0)
It would be useful to reference the part numbers for the filters on this page for easy cross-reference to the transmission data.
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
FW1AND Support Documentation
FW1ANDベース付きフィルターホイール、Ø25 mm~Ø25.4 mm(Ø1インチ)フィルタ用、ベースアセンブリ&NDフィルタ5枚付属
¥48,825
Today
FW2AND Support Documentation
FW2AND2輪フィルターホイール、Ø25 mm~Ø25.4 mm(Ø1インチ)フィルタ用、ベースアセンブリ&NDフィルタ10枚付属
¥82,186
Today