グレーデッドインデックスマルチモードファイバーのNAはコア全体に渡り一定ではない


グレーデッドインデックスマルチモードファイバーのNAはコア全体に渡り一定ではない


Please Wait

最大受光角はマルチモードファイバのコア全体に渡り一定か

これはファイバの種類によって異なります。ステップインデックスマルチモードファイバは、ファイバのコアのどの位置においても最大受光角は同じです。反対にグレーデッドインデックスマルチモードファイバは、コアの中心部のみで、入射角が最大範囲である光線を受光します。最大受光角は、中心から離れるにつれ小さくなり、クラッドの境界近くでは0°に近くなります。

Illustration of the refractive index profiles of step-index and graded-index multimode optical fibers
Click to Enlarge

図1: ステップインデックスマルチモードファイバの屈折率( n )は、コア全体に渡り一定です。グレーデッドインデックスマルチモードファイバの屈折率はコアに渡り変動します。最大の屈折率は通常、コアの中心です。

Acceptance angles of a graded-index multimode optical fiber
Click to Enlarge

図 3:グレーデッドインデックスマルチモードファイバの受光角は半径( ρ )によって異なります。なぜならコアの屈折率が径方向の距離によって変動するからです。通常、最大受光角は中心付近、0°に近い最小受光角はクラッドの境界付近で起こります(0 < ρ1 < ρ)。ファイバ端が空気に接していることを想定しています。

Acceptance angles of a step-index multimode optical fiber
Click to Enlarge

図2:ステップインデックスマルチモードファイバは、角度が≤|θmax |の入射光を良好な結合効率でコアに受光します。最大受光角はコア半径( ρ )に渡り一定です。ファイバ端が空気に接していることを想定しています。

ステップインデックスマルチモードファイバ
ステップインデックスマルチモードファイバのコアは、図1の左上に示すようなフラットトップの屈折率プロファイルを有します。 光がファイバの平坦な端面に入射されたとき、最大受光角(θmax )は、コアのどの位置においても同じです(図2)。これはコア全体にわたって屈折率が一定であり、そして受光角はクラッドの屈折率に大きく依存するからです。

光が入射されるのがコアの中心だろうと端だろうと、ステップインデックスマルチモードファイバは、ファイバの軸に対して±θmaxの角度内の光円錐を受光します。

グレーデッドインデックスマルチモードファイバ
図1の右上に示すような一般的なグレーデッドインデックスマルチモードファイバは、屈折率がコアの中心で最も高く、径方向の距離( ρ )に反比例して小さくなります。図3の式は、径方向距離の依存したコア屈折率により、最大受光角、すなわち開口数(NA)が算出できることを示しています。この式は、ファイバ端面が、平坦で、空気と接しており、ファイバ軸に対して垂直であることを想定しています。

図3では、コアの屈折率により角度が制限されている光錐を示しています。最大の角度の広がり θmax )は、ファイバ軸(ρ = 0)の場合となります。広がり角は、ファイバ軸に対する径方向距離が大きくなると減少します。

ステップインデックスか、グレーデッドインデックスか?
ステップインデックスマルチモードファイバの方がグレーデットインデックスマルチモードファイバよりもより多くの光を集める可能性があります。これは、ステップインデックスのコアに渡り、開口数(NA)は一定で、グレーデッドインデックスのコアでは放射距離に応じてNAが小さくなるからです。

しかし、グレーデッドインデックスのプロファイルにより、すべての導波モードで同じような伝搬速度が得られるため、ビームがファイバを伝送する際のモード分散が小さくなります。

できるだけ多くの量の光をマルチモードファイバに結合する必要がある用途で、モード分散に敏感ではない場合には、ステップインデックスマルチモードファイバの方がより良い選択となります。逆のケースにおいてはグレーデッドインデックスマルチモードファイバを検討する必要があります。

参考文献
[1] Gerd Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991), Section 2.6.

「Insights-ヒント集」は下記リンクからご覧いただけます。  
一覧を見る

最終更新日:2019年1月2日


Posted Comments:
No Comments Posted