アカウント作成  |   ログイン

View All »Matching Part Numbers


カートは空です
         

シングルモードFC/PCパッチケーブル


  • SM Patch Cables for 320 to 2300 nm
  • Connectorized on Both Ends with High-Quality Ceramic FC/PC Connectors
  • Low Back-Reflection (Return Loss) at Fiber-to-Fiber Junctions
  • Typical Return Loss 50 dB (40 dB min)

One End Labeled with Part
Number for Easy Identification

P1-405B-FC-2

FC/PC Connector

Related Items


Please Wait
Custom Patch Cables

特長

  • 320 nm~2300 nmの透過帯域用SMパッチケーブル
  • 両端のコネクタは2.0 mmのナローキーのFC/PCコネクタ
  • 低い後方反射(高い反射減衰量): 50 dB (典型値)
  • 標準品としてご提供
  • ダストキャップが2個付属

両端にFC/PCコネクタ付きシングルモードパッチケーブルは当社で製造されています。これらのケーブルは、使いやすく、また耐久性を向上するため、ケブラ繊維でファイバを覆い、さらにØ3 mmのPVC被覆により保護しています。

各パッチケーブルには、フェルール端を埃や他の異物から守るための保護キャップが2個付属しています。FC/PCコネクタ用の追加のプラスチック製保護キャップCAPFやネジ付き金属製ファイバーキャップCAPFMも別途販売しています。FC-FC、またFC-SMAコネクタの接続用のアダプタもご用意しています。アダプタを用いた接続では、後方反射が抑制され、2つのファイバコアが適切にアライメントされるので、損失も抑えられます。

短波長用の低挿入損失パッチケーブルもご用意しています。このケーブルでは、コア同心度の良好なシングルモードファイバを選別してご提供しています。また、当社はARコーティング付きシングルモードパッチケーブルもご用意しており、ファイバから自由空間出力する用途で高い性能を発揮するために、ファイバ端に反射防止コーティングを施しています。お客様の要望に適した標準品のパッチケーブルが見つからない場合は、カスタムパッチケーブルもご用意しておりますのでお気軽にお問い合わせください。

*コネクタについて:日本国内においては、同規格で互換性のあるコネクタ製品を使用している場合があり、掲載画像と色や外観が異なる場合がございます。予めご了承ください。

Item #P1-305A-FCP1-405B-FCP1-460B-FCP1-630A-FCP1-780A-FC
FiberSM300SM400SM450SM600780HP
Operating Wavelength320 - 430 nm405 - 532 nm488 - 633 nma633 - 780 nmb780 - 970 nm
Cutoff Wavelength≤310 nm305 - 400 nm350 - 470 nma500 - 600 nm730 ± 30 nm
Mode Field Diameter
(MFD)c
2.0 - 2.4 µm @ 350 nm2.5 - 3.4 µm @ 480 nm2.8 - 4.1 µm @ 488 nm3.6 - 5.3 µm @ 633 nm5.0 ± 0.5 µm @ 850 nm
Cladding Diameter125 ± 1.0 µm125 ± 1.0 µm125 ± 1.0 µm125 ± 1.0 µm125 ± 1.5 µm
Coating Diameter245 ± 15 µm245 ± 15 µm245 ± 15 µm245 ± 15 µm245 ± 15 µm
Attenuation (Max)d≤70 dB/km @ 350 nm≤50 dB/km @ 430 nm
≤30 dB/km @ 532 nm
≤50 dB/km @ 488 nm≤15 dB/km @ 633 nm<3.5 dB/km @ 780 nm
NA0.12 - 0.140.12 - 0.140.10 - 0.140.10 - 0.140.13
Insertion Loss
(Typical)
3.0 dB Loss (Connector to Connector) @ 375 nm2.5 dB Loss (Connector to Connector) @ 405 nm2.5 dB Loss (Connector to Connector) @ 488 nm2.0 dB Loss (Connector to Connector) @ 633 nm1.5 dB Loss (Connector to Connector) @ 780 nm
Return Loss50 dB Typical (40 dB Min)
ConnectorsFC/PC Narrow Key (2.0 mm) on Both Ends
30126C3
Lengthe1 m (for items ending in -1)
2 m (for items ending in -2)
5 m (for items ending in -5)
10 m (for items ending in -10)
Protective JacketingØ3 mm, Yellow
FT030-Y
  • 高いカットオフ波長を得るためファイバは特別選定。カットオフ波長近傍でのSMファイバ動作については、入射状態を考慮する必要があります。
  • 波長範囲は1例で保証値ではありません。
  • MFD は公称値、使用する波長での計算値
  • 損失は、ファイバ素線の場合の数値です。
  • ケーブルの種類によっては、全ての長さを標準品としてご用意していない場合があります。特定の長さのケーブルをご希望の場合は「カスタムケーブル」をご覧ください。
Item #P1-830A-FCP1-980A-FCP1-SMF28E-FCP1-1550A-FCP1-2000-FC-2
FiberSM800-5.6-125SM980-5.8-125SMF-28 Ultra1550BHPSM2000
Operating Wavelength830 - 980 nm980 - 1550 nma1260 - 1625 nm1460 - 1620 nm1700 - 2300 nm
Cutoff Wavelength660 - 800 nm870 - 970 nm<1260 nm1400 ± 50 nm1700 nm
Mode Field Diameter
(MFD)b
4.7 - 6.9 µm @ 830 nm5.3 - 6.4 µm @ 980 nm9.2 ± 0.4 µm @ 1310 nm
10.5 ± 0.5 µm @ 1550 nm
9.5 ± 0.5 µm @ 1550 nm13 ± 1 µm @ 1996 nm
Cladding Diameter125 ± 1.0 µm125 ± 1.0 µm125 ± 0.7 µm125 ± 1.0 µm125 ± 1 µm
Coating Diameter245 ± 15 µm245 ± 15 µm242 ± 5 µm250 ± 15 µm250 ± 15 µm
Attenuationc<5 dB/km @ 830 nm ≤2.0 dB/km ≤0.32 dB/km @ 1310 nm 
≤0.18 dB/km @ 1550 nm
0.5 dB/km @ 1550 nm (Max)20 dB/km @ 1900 nmd (Typical)
250 dB/km @ 2300 nmd (Typical)
NA0.10 - 0.140.13 - 0.150.140.130.11
Insertion Loss
(Typical)
1.5 dB Loss (Connector to Connector) @ 830 nm1.0 dB Loss (Connector to Connector) @ 980 nm
0.7 dB Loss (Connector to Connector) @ 1064 nm
0.3 dB Loss (Connector to Connector) @ 1310 nm0.3 dB Loss (Connector to Connector) @ 1550 nm0.3 dB Loss (Connector to Connector) @ 2000 nm
Return Loss50 dB Typical (40 dB Min)
ConnectorsFC/PC Narrow Key (2.0 mm) on Both Ends
30126C3
Lengthe1 m (for items ending in -1)
2 m (for items ending in -2)
5 m (for items ending in -5)
10 m (for items ending in -10)
Protective JacketingØ3 mm, Yellow
FT030-Y
  • 波長範囲は1例で保証値ではありません。
  • MFDは公称値、使用する波長での計算値
  • 損失は、ファイバ素線の場合の数値です。
  • SM2000の損失は波長によって大きく異なります。
  • ケーブルの種類によっては、全ての長さを標準品としてご用意していない場合があります。特定の長さのケーブルをご希望の場合は「カスタムケーブル」をご覧ください。

レーザによる石英ファイバの損傷

このチュートリアルではコネクタ無し(素線)ファイバ、コネクタ付きファイバ、およびレーザ光源に接続するその他のファイバ部品に関連する損傷メカニズムを詳しく説明しています。そのメカニズムには、空気/ガラス界面(自由空間結合時、またはコネクタ使用時)ならびにファイバ内における損傷が含まれます。ファイバ素線、パッチケーブル、または溶融型カプラなどのファイバ部品の場合、損傷につながる複数の可能性(例:コネクタ、ファイバ端面、機器そのもの)があります。ファイバが対処できる最大パワーは、常にそれらの損傷メカニズムの中の最小の限界値以下に制限されます。

損傷閾値はスケーリング則や一般的なルールを用いて推定することはできますが、ファイバの損傷閾値の絶対値は利用方法やユーザ定義に大きく依存します。このガイドは、損傷リスクを最小に抑える安全なパワーレベルを推定するためにご利用いただくことができます。適切な準備と取扱い方法に関するガイドラインにすべて従えば、ファイバ部品は規定された最大パワーレベルで使うことができます。最大パワーの値が規定されていない場合は、部品を安全に使用するために下表の「実用的な安全レベル」の範囲に留めてご使用ください。 パワー処理能力を低下させ、ファイバ部品に損傷を与える可能性がある要因は、ファイバ結合時のミスアライメント、ファイバ端面の汚れ、あるいはファイバそのものの欠陥などですが、これらに限られるわけではありません。特定の用途におけるファイバのパワー処理能力に関するお問い合わせは当社までご連絡ください。

Power Handling Limitations Imposed by Optical Fiber
Click to Enlarge

損傷のないファイバ端
Power Handling Limitations Imposed by Optical Fiber
Click to Enlarge

損傷のあるファイバ端

空気/ガラス界面における損傷

空気/ガラス界面ではいくつかの損傷メカニズムが存在する可能性があります。自由空間結合の時、またはコネクタで2本のファイバを結合した時、光はこの界面に入射します。高強度の光は端面を損傷し、ファイバのパワー処理能力の低下や恒久的な損傷につながる場合があります。コネクタ付きのファイバで、コネクタがエポキシ接着剤でファイバに固定されている場合、高強度の光によって発生した熱により接着剤が焼けて、ファイバ端面に残留物が残る可能性があります。

Estimated Optical Power Densities on Air / Glass Interfacea
TypeTheoretical Damage ThresholdbPractical Safe Levelc
CW
(Average Power)
~1 MW/cm2~250 kW/cm2
10 ns Pulsed
(Peak Power)
~5 GW/cm2~1 GW/cm2
  • すべての値はコネクタ無し(素線)の石英ファイバに対する仕様で、クリーンな状態のファイバ端面への自由空間結合に適用されます。
  • 損傷リスク無しでファイバ端面に入射できる最大パワー密度の推定値です。これはシステムに大きく依存するため、ハイパワーで使用する前に光学系内のファイバ部品の性能ならびに信頼性の確認をお客様ご自身で実施していただく必要があります。
  • ほとんどの使用状態でファイバを損傷することなく端面に入射できる安全なパワー密度の推定値です。

ファイバ素線端面での損傷メカニズム

ファイバ端面での損傷メカニズムはバルクの光学素子の場合と同様なモデル化ができ、UV溶融石英(UVFS)基板の標準的な損傷閾値を石英ファイバに当てはめることができます。しかしバルクの光学素子とは異なり、光ファイバの空気/ガラス界面においてこの問題に関係する表面積やビーム径は非常に小さく、特にシングルモードファイバの場合はそれが顕著です。 パワー密度が与えられたとき、ファイバに入射するパワーは、小さいビーム径に対しては小さくする必要があります。

右の表では光パワー密度に対する2つの閾値が記載されています。理論的な損傷閾値と「実用的な安全レベル(実用的な安全レベル)」です。一般に、理論的損傷閾値は、ファイバ端面の状態も結合状態も非常に良いという条件で、損傷のリスク無しにファイバの端面に入射できる最大パワー密度の推定値を表しています。「実用的な安全レベル」のパワー密度は、ファイバ損傷のリスクが極めて小さくなる値を示しています。ファイバまたはファイバ部品をこの実用的な安全レベルを超えて使用することは可能ですが、その時は取扱い上の注意事項を適切に守り、使用前にローパワーで性能をテストする必要があります。

シングルモードならびにマルチモードファイバの実効面積の計算
シングルモードファイバの実効面積は、モードフィールド径(MFD)、すなわちファイバ内の光が伝搬する部分の断面積によって定義されます。この面積にはファイバのコアとクラッドの一部が含まれます。シングルモードファイバとの結合効率を良くするためには、入射ビーム径をファイバのモードフィールド径に合致させなければなりません。

例として、シングルモードファイバSM400を400 nmで使用した時のモードフィールド径(MFD)は約Ø3 µmで、SMF-28 Ultraを1550 nmで使用したときのモードフィールド径(MFD)はØ10.5 µmです。これらのファイバの実効面積は下記の通り計算します。

SM400 Fiber: Area = Pi x (MFD/2)2 = Pi x (1.5 µm)2 = 7.07 µm= 7.07 x 10-8 cm2

 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2 = 86.6 µm= 8.66 x 10-7 cm2

ファイバ端面が対応できるパワーを推定するには、パワー密度に実効面積を乗じます。なおこの計算は均一な強度プロファイルを想定しています。しかしほとんどのレーザービームでは、シングルモード内でガウス分布を示すため、ビームの端よりも中央のパワー密度が高くなります。よって、これらの計算は損傷閾値または実用的安全レベルに対応するパワーとは若干異なることを考慮する必要があります。連続光源を想定して上記のパワー密度の推定値を使用すると、それぞれのパワーは下記のように求められます。

SM400 Fiber: 7.07 x 10-8 cm2 x 1 MW/cm2 = 7.1 x 10-8 MW = 71 mW (理論的損傷閾値)
     7.07 x 10-8 cm2 x 250 kW/cm2 = 1.8 x 10-5 kW = 18 mW (実用的な安全レベル)

SMF-28 Ultra Fiber: 8.66 x 10-7 cm2 x 1 MW/cm2 = 8.7 x 10-7 MW = 870 mW (理論的損傷閾値)
           8.66 x 10-7 cm2 x 250 kW/cm2 = 2.1 x 10-4 kW = 210 mW (実用的な安全レベル)

マルチモードファイバの実効面積は、そのコア径によって定義されますが、一般にシングルモードファイバのMFDよりもはるかに大きくなります。当社では最適な結合を得るためにコア径のおよそ70~80%にビームを集光することをお勧めしています。マルチモードファイバでは実効面積が大きくなるほどファイバ端面でのパワー密度は下がるので、より大きな光パワー(通常キロワットオーダ)を入射しても損傷は生じません。

フェルール・コネクタ付きファイバに関する損傷メカニズム


Click to Enlarge
フェルール・コネクタ付きシングルモード石英ファイバのパワー処理限界値(概算)を示したグラフ。各線はそれぞれの損傷メカニズムに応じたパワーレベルの推定値を示しています。 処理できる最大パワーは、損傷メカニズムごとに制限されるパワーのうちの最小値(実線で表示)によって制限されます。

コネクタ付きファイバのパワー処理能力に関しては、ほかにも考慮すべき点があります。ファイバは通常、エポキシ接着剤でセラミック製またはスチール製のフェルールに取り付けられています。光がコネクタを通してファイバに結合されると、コアに入射せずにファイバを伝搬する光は散乱されてファイバの外層からフェルール内へ、さらにフェルール内でファイバを保持する接着剤へと伝搬します。光の強度が大きいとエポキシ接着剤が焼け、それが蒸発して残留物がコネクタ端面に付着します。これによりファイバ端面に局所的に光を吸収する部分ができ、それに伴って結合効率が減少して散乱が増加するため、さらなる損傷の原因となります。

エポキシ接着剤に関連する損傷は、いくつかの理由により波長に依存します。一般に、光の散乱は長波長よりも短波長で大きくなります。短波長用のMFDの小さなシングルモードファイバへの結合時には、ミスアライメントに伴ってより多くの散乱光が発生する可能性があります。

エポキシ樹脂が焼損するリスクを最小に抑えるために、ファイバ端面付近のファイバとフェルール間にエポキシ接着剤の無いエアギャップを有するファイバーコネクタを構築することができます。当社の高出力用マルチモードファイバーパッチケーブルでは、このような設計のコネクタを使用しております。

複数の損傷メカニズムがあるときのパワー処理限界値を求める方法

ファイバーケーブルまたはファイバ部品において複数の損傷要因がある場合(例:ファイバーパッチケーブル)、処理できるパワーの最大値は必ずファイバ部品ごとの損傷閾値の中の最小値で制限されます。

右のグラフは、シングルモードパッチケーブルにおけるファイバ端面での損傷とコネクタでの損傷に伴うパワー処理限界の推定値を例示しています。 ある波長におけるコネクタ付きファイバの総合的なパワー処理限界値は、その波長に対する2つの制限値の小さい方の値(実線)によって制限されます。488 nm付近で使用しているシングルモードファイバは主にファイバ端面の損傷(青い実線)によって制限されますが、1550 nmで使用しているファイバはコネクタの損傷(赤い実線)によって制限されます。

マルチモードファイバの実効面積はコア径で定義され、シングルモードファイバの実効面積より大きくなります。その結果、ファイバ端面のパワー密度が小さくなり、大きな光パワー(通常キロワットオーダ)を入射してもファイバに損傷は生じません(グラフには表示されていません)。しかし、フェルール・コネクタの損傷による限界値は変わらないため、マルチモードファイバが処理できる最大パワーはフェルールとコネクタによって制限されることになります。

上記の値は、取り扱いやアライメントが適切で、それらによる損傷が生じない場合のパワーレベルです。また、ファイバはここに記載されているパワーレベルを超えて使用されることもあります。しかし、そのような使い方をする場合は一般に専門的な知識が必要で、まずローパワーでテストして損傷のリスクを最小限に抑える必要があります。その場合においても、ハイパワーで使用するファイバ部品は消耗品と捉えた方が良いでしょう。

ファイバ内の損傷閾値

空気/ガラス界面で発生する損傷に加え、ファイバのパワー処理能力はファイバ内で発生する損傷メカニズムによっても制限されます。この制限はファイバ自体が本質的に有するもので、すべてのファイバ部品に適用されます。ファイバ内の損傷は、曲げ損失による損傷とフォトダークニングによる損傷の2つに分類されます。

曲げ損失
ファイバが鋭く曲げられると、コア内を伝搬する光がコア/クラッド界面において反射する際に、その反射角が全反射臨界角よりも大きくなります。曲げ損失は、このように内部全反射ができなくなることにより生じる損失です。このような状況下では、光はファイバから局所的に漏れだします。漏れる光のパワー密度は一般に大きく、ファイバのコーティングや補強チューブが焼損する可能性があります。

特殊ファイバに分類されるダブルクラッドファイバは、コアに加えてファイバのクラッド(2層目)も導波路として機能するため、曲げ損失による損傷のリスクが抑えられます。クラッドと被覆の界面の臨界角をコアとクラッドの界面の臨界角より大きくすることで、コアから漏れた光はクラッド内に緩く閉じ込められます。その後、光はセンチメートルからメートルオーダーの距離に渡って漏れ出しますが、局所的ではないため損傷リスクは最小に留められます。当社ではメガワットレベルの大きなパワーにも対応するNA 0.22のダブルクラッドマルチモードファイバを製造、販売しております。

フォトダークニング
もう1つのファイバ内の損傷メカニズムとして、特にコアにゲルマニウムが添加されたファイバをUVや短波長の可視光で使用した時に起こるフォトダークニングまたはソラリゼーションがあります。これらの波長で使用されたファイバは時間の経過とともに減衰量が増加します。 フォトダークニングが発生するメカニズムはほとんど分かっていませんが、その現象を緩和するファイバはいくつか開発されています。例えば、水酸イオン(OH)が非常に低いファイバはフォトダークニングに耐性があることが分かっています。またフッ化物などのほかの添加物もフォトダークニングを低減させる効果があります。

しかし、上記の対応をとったとしても、UV光や短波長に使用したファイバはいずれフォトダークニングが生じます。よってこれらの波長で使用するファイバは消耗品としてお考えください。

光ファイバの準備ならびに取扱い方法

一般的なクリーニングならびに操作ガイドライン
この一般的なクリーニングならびに操作ガイドラインはすべてのファイバ製品向けにお勧めしております。さらに付属資料やマニュアルに記載された個々の製品に特化したガイドラインも遵守してください。損傷閾値の計算は、すべてのクリーニングおよび取扱い手順に適切に従ったときにのみ適用することができます。

  1. (コネクタ付き、またはファイバ素線に関わらず)ファイバを設置または組み込む前に、すべての光源はOFFにしてください。これにより、損傷の可能性のあるコネクタまたはファイバの脆弱な部分に集光されたビームが入射しないようにすることができます。

  2. ファイバやコネクタ端面の品質がファイバのパワー処理能力に直結します。ファイバを光学系に接続する前に必ずファイバ端を点検してください。端面はきれいで、入射光の散乱を招く汚れや汚染物質があってはなりません。ファイバ素線は使用前にクリーブし、クリーブの状態が良好であることを確認するためにファイバ端面の点検をしてください。

  3. ファイバを光学系に融着接続する場合、ハイパワーで使用する前にまずローパワーで融着接続の状態が良いことを確認してください。融着接続の品質が良くないと接続面での散乱が増え、ファイバ損傷の原因となる場合があります。

  4. システムのアライメントや光結合の最適化などの作業はローパワーで行ってください。これによりファイバの(コア以外の)他の部分の露光が最小に抑えられます。ハイパワーのビームがクラッド、被覆またはコネクタに集光された場合、散乱光による損傷が発生する可能性があります。

ハイパワーでファイバを使用するための要点
光ファイバやファイバ部品は一般には安全なパワー限界値内で使用する必要がありますが、アライメントや端面のクリーニングがとても良い理想的な条件下では、ファイバ部品のパワー限界値を上げることができる場合があります。入力または出力パワーを増加させる前に、システム内のファイバ部品の性能と安定性を確認し、またすべての安全ならびに操作に関する指示に従わなければなりません。下記はファイバ内またはファイバ部品内の光パワーをの増大させること加を検討していするときに役立つご提案です。

  1. ファイバースプライサを使用してファイバ部品をシステムに融着接続すると、空気/ファイバ界面での損傷の可能性を最小化できます。品質の高い融着接続が実現されるよう、すべて適切なガイドラインに則って実施する必要があります。融着接続の状態が悪いと、散乱や融着接続面での局所的な加熱などが発生し、ファイバを損傷する可能性があります。

  2. ファイバまたはファイバ部品の接続後、ローパワーでシステムのテストやアライメントを実施してください。システムパワーを必要な出力パワーまで徐々に上昇させ、その間、定期的にすべての部品が適切にアライメントされ、結合効率が入力パワーによって変動していないことを確認します。

  3. ファイバを鋭く曲げると曲げ損失が発生し、ファイバのストレスを受けた部分から光が漏れる可能性があります。ハイパワーで使用している時は、大量の光が小さな局所領域(歪みのある領域)から流出すると局所的に加熱され、ファイバが損傷する可能性があります。使用中はファイバの曲げが生じないよう配慮し、曲げ損失を最小限に抑えてください。

  4. また、用途に適したファイバを選ぶことも損傷防止に役立ちます。例えば、ラージモードエリアファイバは、標準的なシングルモードファイバをハイパワー光用として用いる場合の良い代替品となります。優れたビーム品質を有しながらMFDも大きいため、空気/ファイバ界面でのパワー密度は小さくなります。

  5. ステップインデックスシングルモード石英ファイバは、一般にUV光やピークパワーの大きなパルス光には使用しませんが、これはその用途に伴う空間パワー密度が大きいためです。


Please Give Us Your Feedback
 
Email Feedback On
(Optional)
Contact Me:
Your email address will NOT be displayed.
 
 
Please type the following key into the field to submit this form:
Click Here if you can not read the security code.
This code is to prevent automated spamming of our site
Thank you for your understanding.
  
 
Would this product be useful to you?   Little Use  1234Very Useful

Enter Comments Below:
 
Characters remaining  8000   
Posted Comments:
Poster:William.C.Smith
Posted Date:2017-01-26 08:43:11.483
looking for fiber patch cables that can handle -57 to 57 C. Ones I have tried have lost the test signal at cold, suspect tubing pinching fiber. Using bare fiber now but it is very hard to work with this way. 1550nm, FC/PC connectors both ends, single mode, 2m to 2.5m,
Poster:pbui
Posted Date:2017-01-30 04:09:35.0
Thank you for your feedback. We will contact you directly to discuss potential solutions for your application.
Poster:nhatquang85
Posted Date:2016-11-22 00:54:05.057
How much power can the P1-460B-FC-2 and P1-630A-FC-2 fibers tolerate when coupling? We burnt the edge of the fiber (three of P1-460B-FC-2 and one of P1-630A-FC) when using only 01 mW of input light. We are using 532 nm pulsed laser at 6 ns pulse width. The coupling efficiency was only 30% when the edge of the fibers was burnt.
Poster:tfrisch
Posted Date:2016-11-22 07:53:48.0
Hello, thank you for contacting Thorlabs. Typical power limits for a connectorized fiber are about 300mW of CW power, but this is limited by the adhesive that holds the fiber in the connector, and it assumes that the coupling efficiency has already been maximized. If the coupling efficiency is low, then the lost light can be absorbed by the adhesive. Also keep in mind that the damage threshold is greatly reduced if the face of the fiber is scratched or dirty, and fibers should be cleaned before they are added to a system. I will contact you directly.
Poster:
Posted Date:2016-08-01 10:40:07.45
Hi, I'd like to know the MFD for S405-HP @ 514.5 nm & 532 nm. Any available informaion?
Poster:k.bong
Posted Date:2016-06-21 05:17:18.983
Whats the group delay dispersion of the fiber at 780nm?
Poster:besembeson
Posted Date:2016-06-22 09:55:44.0
Response from Bweh at Thorlabs USA: I will contact you with an estimate.
Poster:
Posted Date:2014-10-06 09:58:41.32
This is your web page on pigtai LD : http://www.thorlabs.co.jp/newgrouppage9.cfm?objectgroup_id=1489 It looks that your fiber used in pigtailed LD handles much mor power than the guideline of DT. How do the fiber in your pigtail LD manage such the high power ?
Poster:jlow
Posted Date:2014-10-08 04:14:48.0
Response from Jeremy at Thorlabs: Typically the limitation for power handling in connectorized fiber depends on the coupling efficiency and cleanliness of the fiber end face. If the coupling efficiency is very high and the fiber end face is clean, then one could couple much more power into the fiber than the general safe guideline we provided.
Poster:ecke
Posted Date:2014-01-21 15:47:46.353
What is the electrical high-voltage strength of these fiber cables? Please specify applicable electrical voltage per cm or per m cable length.
Poster:jlow
Posted Date:2014-01-27 08:15:30.0
Response from Jeremy at Thorlabs: All the materials inside the patch cable (fiber, PVC jacket, polypropylene inner tube, Kevlar threads) have higher breakdown voltage than air. Therefore breakdown will occur in air before it will occur in the fiber optic cable.
Poster:
Posted Date:2013-08-13 15:59:13.177
Why do you sell 1550BHP? What would be advantage for the more expensive fiber patch?
Poster:jlow
Posted Date:2013-08-13 14:33:00.0
Response from Jeremy at Thorlabs: The 1550BHP was initially offered as a lower bend-loss alternative to SMF-28e+ fiber. However, with the addition of the CCC1310-J9 fiber at a later date, the clear advantage has vanished. There are some customers who have designed systems around this specific fiber and we have decided to continue carrying the 1550BHP fiber for ease of procurement for our customers.
Poster:ecerda
Posted Date:2013-08-09 11:03:27.573
Hi. I would like to send a 6 ps @810nm pulse through a very long fiber (25m). I wonder how much dispersion I will get and how much power I can couple in a SM fiber. Thank you.
Poster:cdaly
Posted Date:2013-08-15 16:12:00.0
Response from Chris at Thorlabs: Thank you for using out feedback tool. Dispersion is going to be dependent on the specific fiber which you are using. Not all single mode fiber is going to have the same value for this. I will contact you directly to discuss this with you.
Poster:hambitza
Posted Date:2013-07-02 02:43:11.913
Could you specify the maximum power which e.g. the P1-980A-FC-2 can support? I am using 1083 nm, cw. I already read in the comments below that one should use low powers for the initial coupling to not burn the cladding, but once it is well coupled in, how much power can be used?
Poster:pbui
Posted Date:2013-07-08 17:36:00.0
Response from Phong at Thorlabs: Thank you for your post. Once the laser is well coupled into the fiber, we typically provide safe guideline values of 300 mW for visible wavelengths. However, due to the wavelength dependency, at 980 nm, you may be able to couple as much as 3 W with 90% chance of success. If you increase the power to 5 W, you may get 50% success. For 10 W, you may see only 10% success. Due to misalignment, hot spots can form, resulting in damage to the connector's epoxy.
Poster:lauri.hallman
Posted Date:2013-05-17 10:50:48.59
Hi, This fiber is specced for 450-600nm: http://www.thorlabs.de/_QLPopup.cfm?PN=460HP What happens if it is operated at 640 nm for example? Do you know the material dispersion as a function of wavelength for this fiber?
Poster:tcohen
Posted Date:2013-05-23 13:40:00.0
Response from Tim at Thorlabs: Thank you for your inquiry. If you use a wavelength above the operating wavelength, the light is being guided further into the cladding. It will still be single mode, the dispersion will become smaller and the theoretical attenuation will be lower. However, the fiber will be much more sensitive to bend losses and in reality you will have light leaking into the cladding.
Poster:jlow
Posted Date:2012-10-25 15:53:23.823
Response from Jeremy at Thorlabs: The coupling efficiency is going to be dependent on how close the mode fields overlap between the fiber and your focused spot. Having good control of the position and tip/tilt stage helps as well. I will get in touch with you to discuss about your application and some parts for cleaning and polishing your fiber.
Poster:czl0579
Posted Date:2012-10-25 13:52:30.937
Have you tested the coupling efficiency for P1-630A-FC-2? We used a 20X objective and found the coupling efficiency is only 10%. Can you suggest some optomechanics for us to enhance the efficiency? Also, we suspect the fiber may be burnt at the edge. Do you have some methods to polish the fiber?
Poster:tcohen
Posted Date:2012-03-09 19:58:00.0
Response from Tim at Thorlabs: Thank you for your feedback. The dispersion will be characteristic of the fiber and wavelength used. I have contacted you directly for more information.
Poster:rosalest
Posted Date:2012-03-09 18:29:50.0
Do you happen to know the GVD (dispersion) of the fiber (glass). I would like to calculate an expected dispersion from a 1 ps pulse after my patch cable.
Poster:bdada
Posted Date:2011-11-17 14:40:00.0
Response from Buki at Thorlabs: Thank you for your feedback. We will contact you for more information and to examine and replace your fiber. Please note that 16mW focused onto a single mode fiber core could get up to a power density of 200KW/cm^2. A small shift in the focal spot would move the light into the cladding where the epoxy could burn. It is best to use lower power levels for initial coupling efforts and then increase the power when your light is focused on the core of the fiber, instead of the edge of the fiber.
Poster:c2hollow
Posted Date:2011-11-15 12:20:05.0
How much power can this fiber tolerate when coupling? We burnt the edge of one of our fibers and we were using only 16 mW of light at output.
Poster:bdada
Posted Date:2011-09-20 19:24:00.0
Response from Buki at Thorlabs: Thank you for your question about the performance of the P1-2000-FC-2 at 2.3um. This patch cable uses SM2000 fiber, which we expect to have about 300dB/km attenuation around 2.3um. This is a moderate amount of attenuation, but with just a 2 meter length fiber this is equivalent to about 13% attenuation. Please contact TechSupport@thorlabs.com if you have any further questions.
Poster:snyderja
Posted Date:2011-09-19 12:49:24.0
Do you have any knowledge of the performance of the P1-2000-FC-2 at 2.3 micron? Any idea of the attenuation at this wavelength? Will it work or should I stick to the multi-mode fibers for this wavelength.
Poster:apalmentieri
Posted Date:2010-03-03 16:18:54.0
A further response from Adam at Thorlabs to Mario: We are intrigued by the application and will be providing samples of what we believe may work. Also, once we have a design we will add it to our standard product line of optical cables.
Poster:apalmentieri
Posted Date:2010-03-03 13:40:48.0
A response at Adam at Thorlabs to Mario: We have two options that I think may work well for your application. We can provide a black 3.0mm diameter jacket, FT030, for these fibers or we can provide a 5.1mm diameter stainless steel jacket, FT051SS. These can be ordered as custom patch cables. I will email you directly to see if you are interested in either of these options.
Poster:Mario.Stipcevic
Posted Date:2010-03-03 13:14:42.0
Dear Sirs, In last years I have bought quite a few single- and multi-mode patch cables from Thorlabs, for example P1-830A-FC-2. My research techniques make use of single photons sent thrugh the fiber and the main problem with your patch cables are that ther are quite porous for ambiental light. The light easily enters the fibers and creates a huge background. Would it be possible to obtain/order so called "dark fibers". I believe that feeding fibers through black rather than yellow or orange coating would greatly improve this problem. True solution (perhaps too expensive) could be to wrap the cable with a spiral metal strip, similar to shower pipes. Best regards, Mario Stipcevic
Poster:Laurie
Posted Date:2009-01-22 11:06:01.0
Response from Laurie at Thorlabs to samleeis: A member of our technical support staff will be contacting you directly to provide a quote, discuss the available shipping options, and suggest solutions for coupling the light from a monochromator into the fiber.
Poster:samleeis
Posted Date:2009-01-15 11:14:31.0
I got a P1-405A-FC-5 last month. I would like a quote for a 100 m version of the 405 nm FC single mode patch cable. Is it available for next day shipping? I cannot find the diameter of the core in your website, but only the MFD of 3.2 um. I am interested in the wavelength range of 395 to 475 nm. Do you have any information about the reflection and attenuation there? I am going to couple the light from a monochromator into the P1-405A optical fiber. Do you have any suggestion on what optical parts (ie. lens(es), optical funnel) that I can buy to do this?
Poster:Tyler
Posted Date:2008-06-05 11:18:28.0
A response from Tyler at Thorlabs to dmkg: Our application engineers will send you a quote for the patch cable you are interested in. We have dedicated manufacturing capability devoted to the production of small volume orders of custom fiber patch cables for individual customers, which allows us to offer same day or next day shipping on most orders while minimizing the cost of the patch cord.
Poster:dmkg
Posted Date:2008-06-04 08:27:17.0
Is it possible to get a 10m version of the 405 nm FC single mode patch cable? And what would be the cost of such a cable?
Poster:rburruss
Posted Date:2008-01-07 18:32:03.0
I would like to see the specs for P1-7324-FC-10, but I dont see them on your web page. We have several of your 7324 cables in operation, but have lost the spec sheets, and we would like to know what we have as well as review replacement needs. Thanks you
Poster:technicalmarketing
Posted Date:2007-12-04 09:42:48.0
To: pasquale.bianco -- The single mode P1-830A-FC-2 is not a polarization-maintaining fiber. We do carry a line of polarization-maintaining single mode fibers. Please see the following link: http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1596&visNavID=681. If you would like some help with finding a fiber that meets your needs, please feel free to call our European offices at +49 (0) 8131-5956-0 and speak to one of our application engineers. Thank you for your interest in Thorlabs, and we hope that this information is helpful to you.
Poster:pasquale.bianco
Posted Date:2007-12-04 02:50:11.0
Good morning, my name is Pasquale Bianco, University of Florence, I am interesting at your single mode model P1-830A-FC-2, but I would like know if this fiber can maintain the beam polarization? Best regards Pasquale Bianco

FC/PCシングルモードパッチケーブル、320~430 nm

  • フォトダークニングはほとんどなし
  • 2層アクリル被膜
Fiber TypeOperating WavelengthCutoff WavelengthMode Field DiameterCladding DiameterCoating DiameterMax
Attenuationa
NAConnectorsJacket
SM300320 - 430 nm≤310 nm2.0 - 2.4 µm @ 350 nm125 ± 1.0 µm245 ± 15 µm≤70 dB/km @ 350 nm0.12 - 0.14FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 最大損失はファイバ素線でのデータ
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-305A-FC-1 Support Documentation
P1-305A-FC-1Single Mode Fiber Patch Cable, 1 m, 320 - 430 nm, FC/PC
¥9,620
3-5 Days
P1-305A-FC-2 Support Documentation
P1-305A-FC-2Single Mode Fiber Patch Cable, 2 m, 320 - 430 nm, FC/PC
¥11,798
Today

FC/PCシングルモードパッチケーブル、405~532 nm

Fiber TypeOperating
Wavelength
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationa
NAConnectorsJacket
SM400405 - 532 nm305 - 400 nm2.5 - 3.4 µm @ 480 nm125 ± 1.0 µm245 ± 15 µm≤50 dB/km @ 430 nm
≤30 dB/km @ 532 nm
0.12 - 0.14FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-405B-FC-1 Support Documentation
P1-405B-FC-1Single Mode Fiber Patch Cable, 1 m, 405 - 532 nm, FC/PC
¥9,620
3-5 Days
P1-405B-FC-2 Support Documentation
P1-405B-FC-2Single Mode Fiber Patch Cable, 2 m, 405 - 532 nm, FC/PC
¥11,798
Today
P1-405B-FC-5 Support Documentation
P1-405B-FC-5Single Mode Fiber Patch Cable, 5 m, 405 - 532 nm, FC/PC
¥14,690
3-5 Days

FC/PCシングルモードパッチケーブル、488~633 nm

Fiber TypeOperating
Wavelengtha
Cutoff
Wavelengtha
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationb
NAConnectorsJacket
SM450488 - 633 nm350 - 470 nm2.8 - 4.1 µm @ 488 nm125 ± 1.0 µm245 ± 15 µm≤50 dB/km @ 488 nm0.10 - 0.14FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 高いカットオフ波長を得るためファイバは特別選定。カットオフ波長近傍でのSMファイバ動作については、入射状態を考慮する必要があります
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-460B-FC-1 Support Documentation
P1-460B-FC-1Single Mode Fiber Patch Cable, 1 m, 488 - 633 nm, FC/PC
¥9,490
Today
P1-460B-FC-2 Support Documentation
P1-460B-FC-2Single Mode Fiber Patch Cable, 2 m, 488 - 633 nm, FC/PC
¥10,433
Today
P1-460B-FC-5 Support Documentation
P1-460B-FC-5Single Mode Fiber Patch Cable, 5 m, 488 - 633 nm, FC/PC
¥12,773
Today

FC/PC シングルモードパッチケーブル、633~780 nm

Fiber TypeOperating
Wavelengtha
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationb
NAConnectorsJacket
SM600633 - 780 nm500 - 600 nm3.6 - 5.3 µm @ 633 nm125 ± 1.0 µm245 ± 15 µm≤15 dB/km
@ 633 nm
0.10 -
0.14
FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • この波長範囲はカットオフ波長~ベンドエッジ波長のスペクトル域で、ファイバがTEM00モードで低損失に伝播する領域を示しています。このファイバでは、ベンドエッジ波長は通常、カットオフ波長よりも200 nm長い波長になります
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-630A-FC-1 Support Documentation
P1-630A-FC-1Single Mode Fiber Patch Cable, 1 m, 633 - 780 nm, FC/PC
¥8,418
Today
P1-630A-FC-2 Support Documentation
P1-630A-FC-2Single Mode Fiber Patch Cable, 2 m, 633 - 780 nm, FC/PC
¥9,068
Today
P1-630A-FC-5 Support Documentation
P1-630A-FC-5Single Mode Fiber Patch Cable, 5 m, 633 - 780 nm, FC/PC
¥10,888
Today
P1-630A-FC-10 Support Documentation
P1-630A-FC-10Single Mode Fiber Patch Cable, 10 m, 633 - 780 nm, FC/PC
¥14,690
Today

FC/PC シングルモードパッチケーブル、780~970 nm

Fiber TypeOperating
Wavelength
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationa
NAConnectorsJacket
780HP780 - 970 nm730 ± 30 nm5.0 ± 0.5 µm
@ 850 nm
125 ± 1 µm245 ± 15 µm<3.5 dB/km
@ 780 nm
0.13FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-780A-FC-1 Support Documentation
P1-780A-FC-1Single Mode Fiber Patch Cable, 1 m, 780 - 970 nm, FC/PC
¥10,563
Today
P1-780A-FC-2 Support Documentation
P1-780A-FC-2Customer Inspired!Single Mode Fiber Patch Cable, 2 m, 780 - 970 nm, FC/PC
¥11,928
Today
P1-780A-FC-5 Support Documentation
P1-780A-FC-5Customer Inspired!Single Mode Fiber Patch Cable, 5 m, 780 - 970 nm, FC/PC
¥14,040
Today

FC/PC シングルモードパッチケーブル、: 830~980 nm

Fiber TypeOperating
Wavelengtha
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationb
NAConnectorsJacket
SM800-5.6-125830 - 980 nm660 - 800 nm4.7 - 6.9 µm @ 830 nm125 ± 1.0 µm245 ± 15 µm<5 dB/km
@ 830 nm
0.10 -
0.14
FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • この波長範囲はカットオフ波長~ベンドエッジ波長のスペクトル域で、ファイバがTEM00モードで低損失に伝播する領域を示しています。このファイバでは、ベンドエッジ波長は通常、カットオフ波長よりも200 nm長い波長になります。
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-830A-FC-1 Support Documentation
P1-830A-FC-1Single Mode Fiber Patch Cable, 1m, 830 - 980 nm, FC/PC
¥7,995
3-5 Days
P1-830A-FC-2 Support Documentation
P1-830A-FC-2Single Mode Fiber Patch Cable, 2 m, 830 - 980 nm, FC/PC
¥8,678
Today
P1-830A-FC-5 Support Documentation
P1-830A-FC-5Single Mode Fiber Patch Cable, 5 m, 830 - 980 nm, FC/PC
¥10,075
3-5 Days
P1-830A-FC-10 Support Documentation
P1-830A-FC-10Single Mode Fiber Patch Cable, 10 m, 830 - 980 nm, FC/PC
¥13,260
3-5 Days

FC/PC シングルモードパッチケーブル、980~1550 nm

Fiber TypeOperating
Wavelengtha
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationb
NAConnectorsJacket
SM980-5.8-125980 - 1550 nm870 - 970 nm5.3 - 6.4 µm @ 980 nm125 ± 1.0 µm245 ± 15 µm≤2.0 dB/km0.13 - 0.15FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 設定波長は980 nm、1064 nm、1550 nm。
  • 最大損失は、ファイバ素線でのデータ。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-980A-FC-1 Support Documentation
P1-980A-FC-1Single Mode Fiber Patch Cable, 1 m, 980 - 1550 nm, FC/PC
¥8,158
Today
P1-980A-FC-2 Support Documentation
P1-980A-FC-2Single Mode Fiber Patch Cable, 2 m, 980 - 1550 nm, FC/PC
¥8,808
Today
P1-980A-FC-5 Support Documentation
P1-980A-FC-5Single Mode Fiber Patch Cable, 5 m, 980 - 1550 nm, FC/PC
¥10,368
Today

FC/PCシングルモードパッチケーブル、1260~1625 nm、SMF-28 Ultra

Fiber TypeOperating
Wavelength
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationa
NAConnectorsJacket
SMF-28 Ultra1260 - 1625 nm< 1260 nm9.2 ± 0.4 µm @ 1310 nm
10.5 ± 0.5 µm @ 1550 nm
125 ± 0.7 µm242 ± 5 µm≤0.32 dB/km @ 1310 nm
≤0.18 dB/km @ 1550 nm
0.14FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-SMF28E-FC-1 Support Documentation
P1-SMF28E-FC-1Single Mode Fiber Patch Cable, 1 m, 1260 nm - 1625 nm, FC/PC
¥5,168
Today
P1-SMF28E-FC-2 Support Documentation
P1-SMF28E-FC-2Single Mode Fiber Patch Cable, 2 m, 1260 nm - 1625 nm, FC/PC
¥5,265
Today
P1-SMF28E-FC-5 Support Documentation
P1-SMF28E-FC-5Single Mode Fiber Patch Cable, 5 m, 1260 nm - 1625 nm, FC/PC
¥5,428
Today
P1-SMF28E-FC-10 Support Documentation
P1-SMF28E-FC-10Single Mode Fiber Patch Cable, 10 m, 1260 nm - 1625 nm, FC/PC
¥6,988
Today

FC/PC シングルモードパッチケーブル、1460~1620 nm

Fiber TypeOperating
Wavelength
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Max
Attenuationa
NAConnectorsJacket
1550BHP1460 - 1620 nm1400 ± 50 nm9.5 ± 0.5 µm
@ 1550 nm
125 ± 1.0 µm250 ± 15 µm0.5 dB/km @ 1550 nm0.13FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • 最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-1550A-FC-1 Support Documentation
P1-1550A-FC-1Single Mode Fiber Patch Cable, 1 m, 1460 - 1620 nm, FC/PC
¥9,295
3-5 Days
P1-1550A-FC-2 Support Documentation
P1-1550A-FC-2Single Mode Fiber Patch Cable, 2 m, 1460 - 1620 nm, FC/PC
¥9,978
Today
P1-1550A-FC-5 Support Documentation
P1-1550A-FC-5Single Mode Fiber Patch Cable, 5 m, 1460 - 1620 nm, FC/PC
¥12,773
Today
P1-1550A-FC-10 Support Documentation
P1-1550A-FC-10Single Mode Fiber Patch Cable, 10 m, 1460 - 1620 nm, FC/PC
¥18,720
Today

FC/PC シングルモードパッチケーブル、1700~2300 nm

Fiber TypeOperating
Wavelength
Cutoff
Wavelength
Mode Field
Diameter
Cladding
Diameter
Coating
Diameter
Typical
Attenuationa
NAConnectorsJacket
SM20001700 - 2300 nm1700 nm13 ± 1 µm @ 1996 nm125 ± 1 µm245 ± 10 µm20 dB/km (0.02 dB/m) @ 1.9 µm
250 dB/km (0.25 dB/m) @ 2.3 µm
0.11FC/PC, 2.0 mm Narrow Key
30126C3
Ø3 mm
FT030-Y
  • SM2000の損失は波長に大きく依存します。最大損失の値はファイバ素線での数値です。
+1 数量 資料 型番 - Universal 定価(税抜) 出荷予定日
P1-2000-FC-1 Support Documentation
P1-2000-FC-1Single Mode Fiber Patch Cable, 1 m, 1700 - 2300 nm, FC/PC
¥10,010
3-5 Days
P1-2000-FC-2 Support Documentation
P1-2000-FC-2Customer Inspired!Single Mode Fiber Patch Cable, 2 m, 1700 - 2300 nm, FC/PC
¥11,505
Today
ログイン  |   マイアカウント  |   Contact Us  |   Careers  |   個人情報保護方針  |   Home  |   FAQ  |   Site Index
Regional Websites:East Coast US | West Coast US | Europe | Asia | China
Copyright 1999-2017 Thorlabs, Inc.
Sales: +81-3-5979-8889
Tech Support: +81-3-5979-8889


High Quality Thorlabs Logo 1000px:Save this Image