エシェル回折格子


  • Low Period Gratings for Use in Higher Orders
  • Ideal for High Resolution Spectroscopy
  • Typical Resolutions are 80% to 90% of Theoretical

GE2550-3263

GE2550-0363

(25 mm x 50 mm x 9.5 mm)

Related Items


Please Wait
Selection Guide
Transmission Gratings
RuledUV
Visible
Near IR
Volume Phase
Holographic
Visible
Near IR
Reflective Gratings
RuledUV
Visible
Near IR
Mid IR
Holographic
Echelle
Common Specifications
SubstrateFloat Glass or Pyrex
Thickness (Typical)9.5 mm
Dimensional Tolerance±0.5 mm
Thickness Tolerance±0.5 mm
Damage ThresholdPulsed: 350 mJ/cm2 @ 200 ns (10.6 µm)
CW: 40 W/cm2 (10.6 µm)

特長

  • 高次光の回折に使用する低周波反射型回折格子
  • 高分解能分光に適した製品
  • 分解能は通常、理論値の80%~90%
  • ベアアルミニウムの反射コーティング
  • 基板: フロートガラスまたはパイレックス

高分解能エシェル回折格子は、高次光の回折用に設計された低周波反射型の特殊な回折格子です。 通常、ほかの回折格子やプリズムと併用してオーバーラップしている回折次数を分離します。 また、ブレーズ角が大きいため、高分解能分光の用途に適しています。 高精度ガラス基板のエシェル回折格子の分解能は、理論値の80%~90%です。 用途に適した回折格子を選ぶための情報については、上記「回折格子ガイド」のタブをご参照ください。

マウントとアダプタ

当社では方形の光学素子を精密かつ安定的に取り付け、アライメントするマウントやアダプタを豊富に取り揃えております。 当社の回折格子はすべてキネマティック長方形光学素子用マウントKM100C(右手配列)ならびにKM100CL(左手配列)に直接取り付け可能です。 またラインナップされている3種類の回折格子用キネマティックマウントアダプタのうちの1つを使用し、超安定型キネマティックミラーマウントPOLARIS-K1Eを含む当社のØ25 mm~Ø25.4 mm(Ø1インチ)ミラーマウントに取り付けることもできます。

注意:

回折格子の表面は指紋、水分、エアロゾルほか、ほんの少しの研削材が接触しただけで損傷する場合があります。 回折格子は、必要時のみ、側面だけを持って取り扱ってください。 回折格子の表面に指の油分がつかないよう、ラテックス製手袋等を着用する必要があります。 クリーンで乾燥した空気か、窒素で埃を吹き飛ばす方法以外に回折格子のクリーニングは行わないでください。 溶剤も回折格子の表面に損傷を与える可能性があります。

当社ではクリーンルーム内で回折格子を機械的セットアップに組み込んでおります。 回折格子をサブアセンブリやセットアップに組み込む必要がある用途については、当社までお問い合わせください。

エシェル回折格子の留意点

Echelle Gratings

回折格子の公式: 一般的な回折格子の公式はnλ = d(sin θ + sin θ')のようになります。ここでnは回折次数、 λ は回折波長、d は格子定数(溝の間隔)、θは法線から測定した入射角、θ' は法線から測定した回折角を示しています。

フリースペクトル領域: フリースペクトル領域は、隣接する次数からのスペクトル干渉(重複)なしで、規定の次数内で得られることができる最大スペクトル帯域です。格子間隔が減少すると、フリースペクトル範囲は増大します。また、より高い次数では減少します。λ1とλ2がそれぞれ対象とする帯域のそれぞれ下限、上限の波長の場合、 次のようになります。

フリースペクトル領域 = λ2 - λ1 = λ1/n


エシェル回折格子の使用法: エシェル回折格子の高いブレーズ角は、エネルギを高次の次数に集中します。光が0° の角度で回折格子に入射する場合、回折格子方程式は nλ = d sin θ'のように簡略化されます。従って、sin θ' は次の式で表わされます。

sin θ' = nλ / d

この式から、高次の次数では2つの波長間の角分離は大きくなるということがわかります。600 nm と605 nmの2つの光線が線密度31.6ライン/ mmで回折格子に入射すると仮定する場合、上の方程式からn=1では角分離は0.009°となりますが、n=40では角分離は0.6°となります。 この回折格子には、フリースペクトル領域が630 nm (630 nm/1) から15.8 nm (630 nm/40)まで減少するという欠点があります。 次数分離のために、分散プリズムをエシェル回折格子と組み合わせて使用する場合もあります。

Damage Threshold Specifications
Item # PrefixDamage Threshold
GE2550Pulsed: 350 mJ/cm2 @ 200 ns (10.6 µm)
CW: 40 W/cm2 (10.6 µm)

当社のエシェル回折格子の損傷閾値データ

右の仕様は当社のエシェル回折格子の測定値です。

 

レーザによる損傷閾値について

このチュートリアルでは、レーザ損傷閾値がどのように測定され、使用する用途に適切な光学素子の決定にその値をどのようにご利用いただけるかを総括しています。お客様のアプリケーションにおいて、光学素子を選択する際、光学素子のレーザによる損傷閾値(Laser Induced Damage Threshold :LIDT)を知ることが重要です。光学素子のLIDTはお客様が使用するレーザの種類に大きく依存します。連続(CW)レーザは、通常、吸収(コーティングまたは基板における)によって発生する熱によって損傷を引き起こします。一方、パルスレーザは熱的損傷が起こる前に、光学素子の格子構造から電子が引き剥がされることによって損傷を受けます。ここで示すガイドラインは、室温で新品の光学素子を前提としています(つまり、スクラッチ&ディグ仕様内、表面の汚染がないなど)。光学素子の表面に塵などの粒子が付くと、低い閾値で損傷を受ける可能性があります。そのため、光学素子の表面をきれいで埃のない状態に保つことをお勧めします。光学素子のクリーニングについては「光学素子クリーニングチュートリアル」をご参照ください。

テスト方法

当社のLIDTテストは、ISO/DIS 11254およびISO 21254に準拠しています。

初めに、低パワー/エネルギのビームを光学素子に入射します。その光学素子の10ヶ所に1回ずつ、設定した時間(CW)またはパルス数(決められたprf)、レーザを照射します。レーザを照射した後、倍率約100倍の顕微鏡を用いた検査で確認し、すべての確認できる損傷を調べます。特定のパワー/エネルギで損傷のあった場所の数を記録します。次に、そのパワー/エネルギを増やすか減らすかして、光学素子にさらに10ヶ所レーザを照射します。このプロセスを損傷が観測されるまで繰返します。損傷閾値は、光学素子が損傷に耐える、損傷が起こらない最大のパワー/エネルギになります。1つのミラーBB1-E02の試験結果は以下のようなヒストグラムになります。

LIDT metallic mirror
上の写真はアルミニウムをコーティングしたミラーでLIDTテストを終えたものです。このテストは、損傷を受ける前のレーザのエネルギは0.43 J/cm2 (1064 nm、10 ns pulse、 10 Hz、Ø1.000 mm)でした。
LIDT BB1-E02
Example Test Data
Fluence# of Tested LocationsLocations with DamageLocations Without Damage
1.50 J/cm210010
1.75 J/cm210010
2.00 J/cm210010
2.25 J/cm21019
3.00 J/cm21019
5.00 J/cm21091

試験結果によれば、ミラーの損傷閾値は 2.00 J/cm2 (532 nm、10 ns pulse、10 Hz、 Ø0.803 mm)でした。尚、汚れや汚染によって光学素子の損傷閾値は大幅に低減されるため、こちらの試験はクリーンな光学素子で行っています。また、特定のロットのコーティングに対してのみ試験を行った結果ではありますが、当社の損傷閾値の仕様は様々な因子を考慮して、実測した値よりも低めに設定されており、全てのコーティングロットに対して適用されています。

CWレーザと長パルスレーザ

光学素子がCWレーザによって損傷を受けるのは、通常バルク材料がレーザのエネルギを吸収することによって引き起こされる溶解、あるいはAR(反射防止)コーティングのダメージによるものです[1]。1 µsを超える長いパルスレーザについてLIDTを論じる時は、CWレーザと同様に扱うことができます。

パルス長が1 nsと1 µs の間のときは、損傷は吸収、もしくは絶縁破壊のどちらかで発生していると考えることができます(CWとパルスのLIDT両方を調べなければなりません)。吸収は光学素子の固有特性によるものか、表面の不均一性によるものかのどちらかによって起こります。従って、LIDTは製造元の仕様以上の表面の質を有する光学素子にのみ有効です。多くの光学素子は、ハイパワーCWレーザで扱うことができる一方、アクロマティック複レンズのような接合レンズやNDフィルタのような高吸収光学素子は低いCWレーザ損傷閾値になる傾向にあります。このような低い損傷閾値は接着剤や金属コーティングにおける吸収や散乱によるものです。

Linear Power Density Scaling

線形パワー密度におけるLIDTに対するパルス長とスポットサイズ。長パルス~CWでは線形パワー密度はスポットサイズにかかわらず一定です。 このグラフの出典は[1]です。

Intensity Distribution

繰返し周波数(prf)の高いパルスレーザは、光学素子に熱的損傷も引き起こします。この場合は吸収や熱拡散率のような因子が深く関係しており、残念ながらprfの高いレーザが熱的影響によって光学素子に損傷を引き起こす場合の信頼性のあるLIDTを求める方法は確立されておりません。prfの大きいビームでは、平均出力およびピークパワーの両方を等しいCW出力と比較する必要があります。また、非常に透過率の高い材料では、prfが上昇してもLIDTの減少は皆無かそれに近くなります。

ある光学素子の固有のCWレーザの損傷閾値を使う場合には、以下のことを知る必要があります。

  1. レーザの波長
  2. ビーム径(1/e2)
  3. ビームのおおよその強度プロファイル(ガウシアン型など)
  4. レーザのパワー密度(トータルパワーをビームの強度が1/e2の範囲の面積で割ったもの)

ビームのパワー密度はW/cmの単位で計算します。この条件下では、出力密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません(右グラフ参照)。平均線形パワー密度は、下の計算式で算出できます。

ここでは、ビーム強度プロファイルは一定であると仮定しています。次に、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときはビームの強度が1/e2の2倍のパワー密度を有します(右下図参照)。

次に、光学素子のLIDTの仕様の最大パワー密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です。おおよその目安として参考にできるのは、損傷閾値は波長に対して比例関係であるということです。短い波長で使う場合、損傷閾値は低下します(つまり、1310 nmで10 W/cmのLIDTならば、655 nmでは5 W/cmと見積もります)。

CW Wavelength Scaling

この目安は一般的な傾向ですが、LIDTと波長の関係を定量的に示すものではありません。例えば、CW用途では、損傷はコーティングや基板の吸収によってより大きく変化し、必ずしも一般的な傾向通りとはなりません。上記の傾向はLIDT値の目安として参考にしていただけますが、LIDTの仕様波長と異なる場合には当社までお問い合わせください。パワー密度が光学素子の補正済みLIDTよりも小さい場合、この光学素子は目的の用途にご使用いただけます。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社は個別の情報やテスト結果の証明書を発行することもできます。損傷解析は、類似した光学素子を用いて行います(お客様の光学素子には損傷は与えません)。試験の費用や所要時間などの詳細は、当社までお問い合わせください。

パルスレーザ

先に述べたように、通常、パルスレーザはCWレーザとは異なるタイプの損傷を光学素子に引き起こします。パルスレーザは損傷を与えるほど光学素子を加熱しませんが、光学素子から電子をひきはがします。残念ながら、お客様のレーザに対して光学素子のLIDTの仕様を照らし合わせることは非常に困難です。パルスレーザのパルス幅に起因する光学素子の損傷には、複数の形態があります。以下の表中のハイライトされた列は当社の仕様のLIDT値が当てはまるパルス幅に対する概要です。

パルス幅が10-9 sより短いパルスについては、当社の仕様のLIDT値と比較することは困難です。この超短パルスでは、多光子アバランシェ電離などのさまざまなメカニクスが損傷機構の主流になります[2]。対照的に、パルス幅が10-7 sと10-4 sの間のパルスは絶縁破壊、または熱的影響により光学素子の損傷を引き起こすと考えられます。これは、光学素子がお客様の用途に適しているかどうかを決定するために、レーザービームに対してCWとパルス両方による損傷閾値を参照しなくてはならないということです。

Pulse Durationt < 10-9 s10-9 < t < 10-7 s10-7 < t < 10-4 st > 10-4 s
Damage MechanismAvalanche IonizationDielectric BreakdownDielectric Breakdown or ThermalThermal
Relevant Damage SpecificationNo Comparison (See Above)PulsedPulsed and CWCW

お客様のパルスレーザに対してLIDTを比較する際は、以下のことを確認いただくことが重要です。

Energy Density Scaling

エネルギ密度におけるLIDTに対するパルス長&スポットサイズ。短パルスでは、エネルギ密度はスポットサイズにかかわらず一定です。このグラフの出典は[1]です。

  1. レーザの波長
  2. ビームのエネルギ密度(トータルエネルギをビームの強度が1/e2の範囲の面積で割ったもの)
  3. レーザのパルス幅
  4. パルスの繰返周波数(prf)
  5. 実際に使用するビーム径(1/e2 )
  6. ビームのおおよその強度プロファイル(ガウシアン型など)

ビームのエネルギ密度はJ/cm2の単位で計算します。右のグラフは、短パルス光源には、エネルギ密度が適した測定量であることを示しています。この条件下では、エネルギ密度はスポットサイズとは無関係になります。つまり、スポットサイズの変化に合わせてLIDTを計算し直す必要がありません。ここでは、ビーム強度プロファイルは一定であると仮定しています。ここで、ビームがホットスポット、または他の不均一な強度プロファイルの場合を考慮して、おおよその最大パワー密度を計算する必要があります。ご参考までに、ガウシアンビームのときは一般にビームの強度が1/e2のときの2倍のパワー密度を有します。

次に、光学素子のLIDTの仕様と最大エネルギ密度を比較しましょう。損傷閾値の測定波長が光学素子に使用する波長と異なっている場合には、その損傷閾値は適宜補正が必要です[3]。経験則から、損傷閾値は波長に対して以下のような平方根の関係であるということです。短い波長で使う場合、損傷閾値は低下します(例えば、1064 nmで 1 J/cm2のLIDTならば、532 nmでは0.7 J/cm2と計算されます)。

Pulse Wavelength Scaling

 

波長を補正したエネルギ密度を得ました。これを以下のステップで使用します。

ビーム径は損傷閾値を比較する時にも重要です。LIDTがJ/cm2の単位で表される場合、スポットサイズとは無関係になりますが、ビームサイズが大きい場合、LIDTの不一致を引き起こす原因でもある不具合が、より明らかになる傾向があります[4]。ここで示されているデータでは、LIDTの測定には<1 mmのビーム径が用いられています。ビーム径が5 mmよりも大きい場合、前述のようにビームのサイズが大きいほど不具合の影響が大きくなるため、LIDT (J/cm2)はビーム径とは無関係にはなりません。

次に、パルス幅について補正します。パルス幅が長くなるほど、より大きなエネルギに光学素子は耐えることができます。パルス幅が1~100 nsの場合の近似式は以下のようになります。

Pulse Length Scaling

お客様のレーザのパルス幅をもとに、光学素子の補正されたLIDTを計算するのにこの計算式を使います。お客様の最大エネルギ密度が、この補正したエネルギ密度よりも小さい場合、その光学素子はお客様の用途でご使用いただけます。ご注意いただきたい点は、10-9 s と10-7 sの間のパルスにのみこの計算が使えることです。パルス幅が10-7 sと10-4 sの間の場合には、CWのLIDTも調べなければなりません。

当社のウェブ上の損傷閾値の仕様と我々が行った実際の実験の値の間にはある程度の差があります。これはロット間の違いによって発生する誤差を許容するためです。ご要求に応じて、当社では個別のテスト情報やテスト結果の証明書を発行することも可能です。詳細は、当社までお問い合わせください。


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1997).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).

レーザーシステムが光学素子に損傷を引き起こすかどうか判断するプロセスを説明するために、レーザによって引き起こされる損傷閾値(LIDT)の計算例をいくつかご紹介します。同様の計算を実行したい場合には、右のボタンをクリックしてください。計算ができるスプレッドシートをダウンロードいただけます。ご使用の際には光学素子のLIDTの値と、レーザーシステムの関連パラメータを緑の枠内に入力してください。スプレッドシートでCWならびにパルスの線形パワー密度、ならびにパルスのエネルギ密度を計算できます。これらの値はスケーリング則に基づいて、光学素子のLIDTの調整スケール値を計算するのに用いられます。計算式はガウシアンビームのプロファイルを想定しているため、ほかのビーム形状(均一ビームなど)には補正係数を導入する必要があります。 LIDTのスケーリング則は経験則に基づいていますので、確度は保証されません。なお、光学素子やコーティングに吸収があると、スペクトル領域によってLIDTが著しく低くなる場合があります。LIDTはパルス幅が1ナノ秒(ns)未満の超短パルスには有効ではありません。

Intensity Distribution
ガウシアンビームの最大強度は均一ビームの約2倍です。

CWレーザの例
波長1319 nm、ビーム径(1/e2)10 mm、パワー0.5 Wのガウシアンビームを生成するCWレーザーシステム想定します。このビームの平均線形パワー密度は、全パワーをビーム径で単純に割ると0.5 W/cmとなります。

CW Wavelength Scaling

しかし、ガウシアンビームの最大パワー密度は均一ビームの約2倍です(右のグラフ参照)。従って、システムのより正確な最大線形パワー密度は1 W/cmとなります。

アクロマティック複レンズAC127-030-CのCW LIDTは、1550 nmでテストされて350 W/cmとされています。CWの損傷閾値は通常レーザ光源の波長に直接スケーリングするため、LIDTの調整値は以下のように求められます。

CW Wavelength Scaling

LIDTの調整値は350 W/cm x (1319 nm / 1550 nm) = 298 W/cmと得られ、計算したレーザーシステムのパワー密度よりも大幅に高いため、この複レンズをこの用途に使用しても安全です。

ナノ秒パルスレーザの例:パルス幅が異なる場合のスケーリング
出力が繰返し周波数10 Hz、波長355 nm、エネルギ1 J、パルス幅2 ns、ビーム径(1/e2)1.9 cmのガウシアンビームであるNd:YAGパルスレーザーシステムを想定します。各パルスの平均エネルギ密度は、パルスエネルギをビームの断面積で割って求めます。

Pulse Energy Density

上で説明したように、ガウシアンビームの最大エネルギ密度は平均エネルギ密度の約2倍です。よって、このビームの最大エネルギ密度は約0.7 J/cm2です。

このビームのエネルギ密度を、広帯域誘電体ミラーBB1-E01のLIDT 1 J/cm2、そしてNd:YAGレーザーラインミラーNB1-K08のLIDT 3.5 J/cm2と比較します。LIDTの値は両方とも、波長355 nm、パルス幅10 ns、繰返し周波数10 Hzのレーザで計測しました。従って、より短いパルス幅に対する調整を行う必要があります。 1つ前のタブで説明したようにナノ秒パルスシステムのLIDTは、パルス幅の平方根にスケーリングします:

Pulse Length Scaling

この調整係数により広帯域誘電体ミラーBB1-E01のLIDTは0.45 J/cm2に、Nd:YAGレーザーラインミラーのLIDTは1.6 J/cm2になり、これらをビームの最大エネルギ密度0.7 J/cm2と比較します。広帯域ミラーはレーザによって損傷を受ける可能性があり、より特化されたレーザーラインミラーがこのシステムには適していることが分かります。

ナノ秒パルスレーザの例:波長が異なる場合のスケーリング
波長1064 nm、繰返し周波数2.5 Hz、パルスエネルギ100 mJ、パルス幅10 ns、ビーム径(1/e2)16 mmのレーザ光を、NDフィルタで減衰させるようなパルスレーザーシステムを想定します。これらの数値からガウシアン出力における最大エネルギ密度は0.1 J/cm2になります。Ø25 mm、OD 1.0の反射型NDフィルタ NDUV10Aの損傷閾値は355 nm、10 nsのパルスにおいて0.05 J/cm2で、同様の吸収型フィルタ NE10Aの損傷閾値は532 nm、10 nsのパルスにおいて10 J/cm2です。1つ前のタブで説明したように光学素子のLIDTは、ナノ秒パルス領域では波長の平方根にスケーリングします。

Pulse Wavelength Scaling

スケーリングによりLIDTの調整値は反射型フィルタでは0.08 J/cm2、吸収型フィルタでは14 J/cm2となります。このケースでは吸収型フィルタが光学損傷を防ぐには適した選択肢となります。

マイクロ秒パルスレーザの例
パルス幅1 µs、パルスエネルギ150 µJ、繰返し周波数50 kHzで、結果的にデューティーサイクルが5%になるレーザーシステムについて考えてみます。このシステムはCWとパルスレーザの間の領域にあり、どちらのメカニズムでも光学素子に損傷を招く可能性があります。レーザーシステムの安全な動作のためにはCWとパルス両方のLIDTをレーザーシステムの特性と比較する必要があります。

この比較的長いパルス幅のレーザが、波長980 nm、ビーム径(1/e2)12.7 mmのガウシアンビームであった場合、線形パワー密度は5.9 W/cm、1パルスのエネルギ密度は1.2 x 10-4 J/cm2となります。これをポリマーゼロオーダ1/4波長板WPQ10E-980のLIDTと比較してみます。CW放射に対するLIDTは810 nmで5 W/cm、10 nsパルスのLIDTは810 nmで5 J/cm2です。前述同様、光学素子のCW LIDTはレーザ波長と線形にスケーリングするので、CWの調整値は980 nmで6 W/cmとなります。一方でパルスのLIDTはレーザ波長の平方根とパルス幅の平方根にスケーリングしますので、1 µsパルスの980 nmでの調整値は55 J/cm2です。光学素子のパルスのLIDTはパルスレーザのエネルギ密度よりはるかに大きいので、個々のパルスが波長板を損傷することはありません。しかしレーザの平均線形パワー密度が大きいため、高出力CWビームのように光学素子に熱的損傷を引き起こす可能性があります。

回折格子のチュートリアル

はじめに

回折格子は、透過型、反射型のどちらも回折格子内の繰り返し構造により異なる波長の光を分離します。この構造により、入射光の振幅、位相のいずれか、または両方が変化し、出射光に干渉縞が生じます。透過型の場合、細いスリットが狭い間隔で多数配置されていることにより繰り返し構造が実現されています。このマルチスリットにおける放射照度を波長と位置の関数として解くと、= 0°のときの全ての回折格子に当てはまる次のような一般式が得られます。

Grating Equation 1

(1)

この式は回折格子の式として知られています。この式では、間隔aの回折格子により、λに依存した離散的な角度(theta sub m)で光を偏向する様子を表しています。ここでは回折次数です。回折角theta sub m は、回折格子の表面垂線から測定した出射光の出射角です。(1)の式から、次数mが与えられると、異なる波長の光は異なる角度で回折格子を出ることが分かります。これは白色光源の場合は、波長特性が角度依存を持つ連続スペクトルとして表されることを示しています。

Transmission Grating
図1.透過型回折格子

透過型回折格子

一般的な回折格子の1つに透過型回折格子があります。図1で示しているこの表面に溝のある回折格子は、透明な基板に狭い幅の溝を一定距離離して繰り返しスクラッチまたはエッチングすることによって作られます。aこの構造により、光が散乱する領域ができます。

入射光は表面垂線からtheta sub iの角度で回折格子に入射します。次数mが大きくなると、出力角度(表面垂線からのtheta sub m角度)も大きくなります。入射角0°の場合の一般的な回折格子の式(1)を、幾何学的条件を考慮して変形すると、透過型回折格子の式は以下のようになります。

Grating Equation 2

(2)

ここで図1のように回折格子の表面垂線を基準として入射光と回折光の角度が反対側となるとき、は正(+)とします。この場合、格子垂線に対して同じ側であれば は負となります。

 
Reflective Grating
図2.反射型回折格子

反射型回折格子

一般的な回折格子として、ほかに反射型回折格子があります。反射型回折格子は、一般的に、表面に平行な溝を刻んだ光学素子に金属コーティングを施して作製します。反射型回折格子は、マスタをエポキシやプラスチックにインプリントする方法でも作製可能です。いずれの場合でも、光は異なる次数ならびに波長に応じて異なる角度で刻線面から反射されます。反射型回折格子の例が図2に示されています。透過型と同様の幾何学配置として設定すれば、反射型回折格子の方程式は以下のようになります。

Grating Equation 3

(3)

ここで、図2のように入射光ならびに回折光が回折格子の表面垂線に対して互いに反対側にあればは正、は負とします。回折格子の垂線に対して互いに同じ側であれば、角度は両方とも正です。

反射型も透過型も0次光の場合には回折パターンがないため、通常の表面反射、または透過のように見えます。theta sub i = theta sub mとして(2)の式を解くと、得られる解はm=0のみで、波長や格子の間隔に依存しないことが分かります。この条件では波長に依存した情報が得らません。

この問題は、特殊な表面反射形状を有する繰り返し表面パターンを作製することによって解決することができます。このタイプの回折格子は通常ブレーズド(または刻線)回折格子と呼ばれています。詳細については下記をご覧ください。

ブレーズド(刻線)回折格子

Blazed Grating
図4.ブレーズド回折格子、0次光の反射
Blazed Grating
図3.ブレーズド回折格子の形状

ブレーズド回折格子は、刻線回折格子の名でも知られていますが、特殊な形状をした反射型または透過型の回折格子で、特定の回折次数において最大の回折効率を発揮するように設計されています。つまり、光量のほとんどが設計した回折次数に収まり、他の次数(特に0次)への光量の配分による損失が最小限に留められます。この設計により、ブレーズド回折格子はブレーズ波長と呼ばれる特定の波長で動作します。

ブレーズ波長はブレーズド回折格子を決定づける3つの特性のうちの1つです。他の2つは図3に示している溝またはファセット(facet)の間隔a、そしてブレーズ角gammaです。ブレーズ角gammaは、右図に示すように回折格子に平行な面と表面構造の間の角度です。これはまた表面垂線とファセット垂線の間の角度でもあります。

ブレーズド回折格子は、これまで説明してきた透過型ならびに反射型回折格子と形状が似ています。入射角()と次の反射角()は、回折格子の表面垂線を基準として決定されます。大きな違いは、鏡面反射が回折格子の表面垂線ではなく、ブレーズ角gammaに依存するということです。つまり、回折格子のブレーズ角を変更するだけで回折効率が変えられます。

ブレーズド回折格子を使用した場合の0次光の反射を図4に示しています。 m = 0ではtheta sub iの角度で入射した光はtheta sub mで反射します。(3)の式により、得られる解はtheta sub i = –theta sub mのみです。これは平面における鏡面反射と似ています

Blazed Grating
図6.ブレーズド回折格子、格子表面に垂直に入射した光
Blazed Grating
図5.ブレーズド回折格子、ファセットによる鏡面反射

図5に示すように、ブレーズド回折格子における鏡面反射はその表面構造により、平面における鏡面反射とは異なります。ブレーズド回折格子での鏡面反射theta sub rは、ブレーズ角に依存します。反射角が回折格子表面垂線に対してtheta sub iと同じ側にある場合、この角度は負として定義されます。簡単な幾何学的計算により下記(4)式が導かれます。

Grating Equation 2

(4)

図6はtheta sub i= 0°、すなわちビームが回折格子表面に垂直に入射した場合を示しています。この場合、0次反射光も0°の方向を向いています。(3)と(4)の式により、下記(5)式のようにブレーズ角の2倍の回折格子の方程式を得ます。

Grating Equation 2

(5)

反射型回折格子のリトロウ構成

リトロウ構成とはブレーズド回折格子における特定の配置を意味し、モノクロメータや分光計で重要な役割を果たします。この時、は回折効率が最大となる角度になります。この構成では光の入射角と回折の角度が同じtheta sub i = theta sub mであり、m > 0のため、下記(6)式が得られます。

Grating Equation 2

(6)

Blazed Grating
図7.リトロウ構成

リトロウ角度Theta sub Lは、最大の光強度の次数(m = 1)、設計波長lambda sub Dならびに格子の間隔aによって決まります。リトロウ角度Theta sub Lは設計波長においてブレーズ角度gammaと同じであることは簡単に示されます。当社のブレーズド回折格子のリトロウ/ブレーズ角はすべて回折格子の仕様表に記載されています。

Grating Equation 2

(7)

垂直に入射した光に対する回折次数が大きくなるにつれ、波長に依存する角度間隔も大きくなることが分かります(theta sub i= 0°の場合、theta sub mmが増加すると増加します)。高次回折パターンの使用は、次数が低い回折パターンと比べて不利な点が2点あります。(1)次数が高くなると回折効率が減少すること、そして(2)以下で定義されるフリースペクトルレンジFree Spectral Range が狭くなることです。

Grating Equation 2

(8)

 

ここでlambdaは中心波長、mは次数です。

高次回折パターンにおける1つ目の問題点は、大きいブレーズ角と比較的低い溝密度で構成された特殊な刻線回折格子であるエシェル回折格子を使用することで解決します。大きいブレーズ角は、高次回折にエネルギを集めるのに適しています。2つ目の問題点は、回折格子、分散プリズム、あるいは他の分散光学素子など、別の光学素子を使用して、エシェル回折格子を通った後に波長/次数を分離することで解決できます。

Holographic Gratings
図8.体積位相ホログラフィック回折格子

透過型体積位相ホログラフィック回折格子(VPHグレーティング)

従来の回折格子とは異なり、体積位相ホログラフィック回折格子(VPHグレーティング)の表面には溝がついていません。体積型位相ホログラフィック回折格子は、2つのガラス基板の間に重クロム酸ゼラチン(DCG)フィルムが入っている構成となっております。VPHグレーティングは、ブレーズド回折格子で生じる周期エラーを低減するために設計されています。表面の溝密度の高い回折格子では偏光依存損失の問題もあります。こちらのユニークな透過型1次回折格子は、高い回折効率のピーク、低い偏光依存性損失、広い帯域幅での均一な性能といった特性を有します。

回折格子パターンは、一定の距離間隔のラインの繰り返しaで構成されています。透過型回折格子の干渉パターンは図8に示すようにプレートの平面に対して垂直なため、あらゆる周波数の光がプレートを通ることができます。回折は入射光がDCGフィルムを通るときに起こります。そのために性能を決定する3つの要素は、フィルムの厚さ、バルクの屈折率(ブラグ面間の平均屈折率)、変調指数(ブラグ面間の屈折率の差)です。入射光は表面垂線から測定された角度theta sub iで回折格子に入射します。次数mが大きくなると、出力角度(表面垂線からのtheta sub m角度)も大きくなります。上述の回折格子の式は、体積型位相ホログラフィック回折格子では回折角を算出するのに用いることができます。なぜなら分散がライン密度に依存するからです。回折格子の品質は干渉縞のコントラストによって決定します。コントラストが弱いということは、回折効率が低いか、全く回折格子が形成されていないことを意味します。

DCGフィルムは、複数の品質管理工程を経て基準の性能を満たすことを確認後、適切なサイズに切断されています。フィルムは2つのガラスカバーの間に封止され、材質の品質が下がることを防いでいます。DCGフィルムが2枚のガラス基板に入っているため、VPHグレーティングは耐性が高く、寿命が長いうえに、容易に損傷を受けやすい回折格子と比較してメンテナンスしやすい製品となっております。

Holographic Gratings
図9.ホログラフィック回折格子

ホログラフィック表面回折格子

ブレーズド回折格子は設計波長において高い回折効率を発揮しますが、ゴーストなどの周期エラーの発生や比較的大きな散乱光量により、高感度測定に悪影響を及ぼすことがあります。ホログラフィック回折格子はこのようなエラーを低減または取り除くために設計されています。しかし、ホログラフィック回折格子は、ブレーズド回折格子と比べて回折効率が低いという欠点があります。

ホログラフィック回折格子は、マスタを用いて刻線回折格子と同様のプロセスにより作成されます。マスタのホログラフィック回折格子は通常、感光性材料に2本のレーザービームを干渉させて露光することによって作られます。干渉パターンを周期パターンとして表面に露光し、その後物理的または化学的に処理を行い、正弦波形状のパターンを形成します。ホログラフィック回折格子の例は図9に示しております。

なお、分散は1 mmあたりの溝の数のみで決まり、溝の形状には影響されません。よって、ホログラフィック回折格子も刻線ブレーズド回折格子と同じ回折格子の方程式が使用可能です。

透過型回折格子

透過型回折格子は刻線回折格子と体積型位相ホログラフィック回折格子の2種類をご用意しております。 刻線回折格子は、透明な基板に繰り返し平行な構造をスクラッチまたはエッチングすることによって作られます。これらの回折格子は鋸歯の形状をしており、レプリケーションと呼ばれる工程でマスタからエポキシやプラスチックにインプリントして製造されています。体積型位相ホログラフィック回折格子は、2つのガラス基板の間に重クロム酸ゼラチン(DCG)フィルムが入っている構成となっております。これらの回折格子では、DCGフィルムに正弦波の回折パターンがにレーザ描画されています。詳細については「回折格子のチュートリアル」のタブをご参照ください。

刻線回折格子
UV透過型刻線回折格子は、入射光を回折格子の反対側の特定の角度方向に発散させます。それぞれの製品は仕様化されている波長範囲において適切な回折効率が得られるように、刻線されています。また比較的偏光依存性は小さく、同じ波長範囲の反射型回折格子と同等の回折効率を有します。分光器のように固定型回折格子が必要な用途に適しています。
Visible
Near IR
UV域用刻線(ブレーズド)透過型回折格子
可視域用刻線(ブレーズド)透過型回折格子
近赤外域用刻線(ブレーズド)透過型回折格子
体積型位相ホログラフィック回折格子
Volume Phase Holographic体積型位相ホログラフィック回折格子は、2つのガラス基板の間にDCGフィルムが入っている構成となっております。こちらのユニークな透過型回折格子はメンテナンスが容易で、高い1次回折効率のピークと、広い帯域幅で均一な性能を発揮します。
可視(VIS)域用VPH透過型回折格子
近赤外(NIR)域用VPH透過型回折格子

反射型回折格子

反射型回折格子は、平行な溝を刻んだ光学素子の表面に金属コーティングを施すことで作製されます。当社の反射型回折格子は、マスタからエポキシやプラスチックにインプリントする、レプリケーションと呼ばれる工程により作製されています。いずれの場合でも、光は異なる次数ならびに波長に応じて異なる角度で刻線面から反射されます。当社の刻線反射型回折格子はブレーズド回折格子とも呼ばれますが、その表面はすべて鋸歯の形状をしています。一方で、ホログラフィック反射型回折格子は正弦波の形状をしています。詳細については「回折格子のチュートリアル」のタブをご参照ください。

刻線回折格子
UV刻線回折格子はブレーズ角によりホログラフィック回折格子よりも高い回折効率を得られます。ブレーズ波長に近い波長を中心とした用途に適しています。当社では刻線回折格子を様々なサイズとブレーズ角でご用意しております。.
Visible
Near IR
Mid IR
UV域用刻線(ブレーズド)反射型回折格子
可視域用刻線(ブレーズド)反射型回折格子
近赤外域用刻線(ブレーズド)反射型回折格子
中赤外域用刻線(ブレーズド)反射型回折格子
ホログラフィック回折格子
Holographicホログラフィック回折格子は周期エラーが発生しにくいため、刻線回折格子で生じるようなゴーストイメージが発生しません。少ない迷光、および高い信号対雑音比が必要となるラマン分光法などの用途に適しています。
ホログラフィック正弦波反射型回折格子
エシェル回折格子
Echelleエシェル回折格子は高次光用に設計された長い周期の回折格子です。通常、ほかの回折格子やプリズムと併用してオーバーラップしている回折次数を分離します。高分解能分光の用途に適しています。
エシェル刻線(ブレーズド)回折格子

用途に適した回折格子を選ぶには、下記のような様々な要素を考慮する必要があります。

回折効率:
一般的に刻線回折格子は、ホログラフィック回折格子より回折効率が高くなります。ホログラフィック回折格子は回折効率が低くなりますが、有効波長範囲は広くなります。刻線回折格子の高い回折効率は、蛍光励起ほか、光誘起性の化学反応などの用途に適していると考えられます。

ブレーズ波長:
刻線回折格子には、回折格子基板表面をエッチングして鋸歯状の溝が作られています。それにより、ブレーズ波長付近で鋭い効率のピークが得られます。ホログラフィック回折格子のブレーズ化は難しく、正弦波状の溝となります。よって設計波長付近での効率のピークも低くなります。狭い波長範囲を中心とした用途には、その波長でブレーズ化されている刻線回折格子が有効と考えられます。

迷光:
溝の作成法の違いにより、ホログラフィック回折格子は刻線回折格子よりも迷光が少なくなります。刻線回折格子のすべての溝は一括して機械加工されているため、エラーの頻度も高くなります。ホログラフィック回折格子は、リトグラフの工程で作製されるため、一般的に刻み目のない滑らかなマスタとなります。これらのマスタから作製されたレプリカは迷光が少なくなります。迷光が少ないホログラフィック回折格子は、高い信号対雑音比が必要となるラマン分光法などの用途に適しています。 

分解能:
回折格子の分解能は、2つの波長を空間的に分離する能力です。分解能はレイリの基準を回折最大値に適用することによって求められます。この基準では、1つの波長の最大値がもう1つの波長の最小値に一致する場合、この2つの波長は分解できる、としています。色分解能(R)はR = λ/Δλ = n*Nで定義されます。Δλは分解する波長差、nは回折次数、Nは照射されている範囲の溝の数です。エシェル回折格子では、高次の回折次数を利用するため、分解能が高くなります。

偏光依存:
表面の溝密度が高い回折格子には偏光依存性損失の問題があり、垂直偏光と比べて特に平行偏光において回折効率が大幅に低くなることがあります。体積型位相ホログラフィック回折格子は、高い空間周波数において低い偏光依存性損失が要求される用途向けに設計されています。

回折格子の詳細と用途に適した回折格子の選択については「回折格子のチュートリアル」をご参照ください。

表面に溝が付いた回折格子の注意点:
表面が溝がついた回折格子は指紋、エアロゾル、水分のほか、ほんの少しの研磨材が接触しただけで損傷する場合があります。回折格子は、必要時のみ、側面だけを持って取り扱ってください。回折格子の表面に指の油分がつかないよう、ラテックス製手袋などを着用する必要があります。溶剤も回折格子の表面に損傷を与える可能性があります。クリーンで乾燥した空気か、窒素で埃を吹き飛ばす方法以外に回折格子のクリーニングは行わないでください。回折格子表面の引っかき傷などの小さな表面的な欠陥では、通常、回折格子の特性に影響を与えることはありません。一方、体積型位相ホログラフィック回折格子は、一般的な光学素子のクリーニング手順でクリーニングが可能で、高い耐性もあります。


Posted Comments:
user  (posted 2018-03-15 13:53:23.427)
Hi Thorlabs-Team, The R4 (75° blaze) echelle is in format 1:2. Hence, it is not possible, without significant losses, to use a beam with 25 mm diameter. It would be better to have these gratings with 1:4 ratio. Additionally, 31.6 g/mm would give a better spectral format to fit it on a detector. Is it likely that you can provide such gratings (31.6 g/mm 25 mm x 100 mm) in the future? best wishes
llamb  (posted 2018-03-19 10:43:48.0)
Hello, thank you for contacting Thorlabs and for your feedback. Currently we are limited to 50 mm x 50 mm custom sizes for our gratings, but I will add your idea to our internal product forum for future development. Customized gratings will depend on your desired order quantity as well. I will reach out to you directly to discuss this further.
ludoangot  (posted 2016-11-29 16:24:19.48)
Hello, I've noticed that for these echelle gratings the dispersion is expressed in nm/mrad while for your holographic gratings they are in mrad/nm, why is it so?
tcampbell  (posted 2016-12-15 03:36:51.0)
Response from Tim at Thorlabs: Thank you for your feedback. We have added the equivalent dispersion values in nm/mrad to the Reflective Holographic Gratings page. The two types of gratings can now be compared more directly.
user  (posted 2016-06-12 13:03:20.217)
What is the efficiency of this grating at 1054nm?
besembeson  (posted 2016-06-14 03:20:00.0)
Response from Bweh at Thorlabs USA: We don't have efficiency curves for these gratings. These are typically used in conjunction with a dispersive elements and there are numerous possible setup configurations such that providing data under one set of conditions is not useful. Please contact me at techsupport@thorlabs.com so I get an understand of your configuration and if we can provide some theoretical data.
Adam  (posted 2010-05-21 12:29:44.0)
A response from Adam at Thorlabs to jnchacon: Currently, the only products we sell, which can hold this grating are our KM100C or CH1A. Please note that we are working on new products that should be released soon that are kinematic mounts specifically designed for gratings. We can offer a prototype unit if you are interested.
jnchacon  (posted 2010-05-21 10:47:41.0)
Question: What holders are adequate for positioning this echelle in an optic table allowing me to adjust the angle (incidence angle)? Regards.
Back to Top

エシェル回折格子

Item #Groovesa
(lines/mm)
Blaze AngleWavelength
Range
Dispersion
(nm/mrad)
Size
GE2550-0363 31.663°UV - 57 µm14.3725.0 mm x 50.0 mm x 9.5 mm
(0.98" x 1.97" x 0.37")
GE2550-086379.063°UV - 23 µm5.75
GE2550-087579.075°UV - 25 µm3.28
GE2550-326331663°UV - 5.7 µm1.44
  • 溝は短辺に平行になるように切られています。
+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
GE2550-0363 Support Documentation
GE2550-0363Echelle Grating, 31.6 Grooves/mm, 63° Blaze, 25 mm x 50 mm x 9.5 mm
¥35,641
Today
GE2550-0863 Support Documentation
GE2550-0863Echelle Grating, 79.0 Grooves/mm, 63° Blaze, 25 mm x 50 mm x 9.5 mm
¥35,641
7-10 Days
GE2550-0875 Support Documentation
GE2550-0875Echelle Grating, 79.0 Grooves/mm, 75° Blaze, 25 mm x 50 mm x 9.5 mm
¥35,641
7-10 Days
GE2550-3263 Support Documentation
GE2550-3263Echelle Grating, 316 Grooves/mm, 63° Blaze, 25 mm x 50 mm x 9.5 mm
¥35,641
7-10 Days