"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='AF2C99219CE71EFB80C75F34BEBCBE57';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2波長用偏波保持波長分割多重(WDM)カプラ![]()
Combine Two Wavelengths into a Single Fiber Output WP9850B 980 nm / 1550 nm WDM with Unterminated Outputs WP9864A 980 nm / 1064 nm WDM with FC/APC Connectors Split Two Wavelengths from a Single Fiber Input ![]() Please Wait PANDA型PMファイバの断面図![]() Click for Details WDMカプラの筐体には型番とポートの波長が刻印されています。コモンポートは1本のファイバが付いている側で、被覆は白色です。 特長
当社の溶融型偏波保持波長分割多重(PM WDM)カプラは、入射光の偏光状態を維持しながら偏波保持ファイバ内で2種類の波長を結合します。 また、双方向で使用可能であり、コモンポートに入力した2種類の波長を2つの異なる出力ポートに分波することもできます。広帯域光源からの出射光を分岐する設計ではありません。 偏波保持型WDMカプラは、エルビウム添加ならびにイッテルビウム添加ファイバ増幅器の励起光信号光の合分波用途に使用されます。 その他の様々な用途においても簡単にカスタマイズが可能なため、設計サイクルと新規プロジェクト構築の短時間化につなげていただけます。カスタム仕様のご注文については当社までお問い合わせください。 偏波保持型WDMカプラは980 nm/1064 nmと980 nm/1550 nmの2種類の組み合わせをご用意しております。 FC/PCまたはFC/APCコネクタ付き、あるいはコネクタ無しからお選びいただけます。 こちらのWDMカプラはPANDA型の偏波保持ファイバを使用しているため、光がファイバのスロー軸に沿って入射した際に高い偏光消光比(PER)を維持することができます。右図のように、ストレスロッドがファイバーコアと並んで存在し、応力を付与することでファイバーコア内に複屈折を生じさせ偏波保持動作を可能にしています。 当社の偏波保持型WDMの偏光消光比は≥20 dB(コネクタ含む)で、動作範囲は-40 °C~ 85 °Cと広範囲です。これらのWDMは、様々なテストの実施により高いPERが実証されています。テストについての詳細は「PER測定」のタブをご参照ください。テスト結果はカプラに付属するデータシートに記載されています。980/1550 nmの偏波保持型WDMのサンプルデータシートはこちらからご覧いただけます。また、各カプラには仕様書をご用意しており、そこには挿入損失の波長特性のグラフが示されています。下の赤いアイコン(
WDM(波長分割多重)カプラ当社のWDM(波長分割多重)カプラは光を2つの異なる波長に分波もしくは合波するよう設計されています。当社では、可視域、近赤外域、赤外域のスペクトルにわたるさまざまな波長の組合せでカプラをご用意しています。可視域用WDMカプラは、一般に顕微鏡用途で多色合成画像の生成に使用されるため、「波長コンバイナ」とも呼ばれています。 右の動画は1x2 WDMカプラの基本的な動作原理を示しています。光を合波する場合は、特定波長用のポートにその帯域範囲内の光が入射します。その光を多波長信号に合波し、信号の損失を最小に抑えながらコモンポートから出力します。 特に明記されていなければ、当社のWDMカプラは双方向に機能します。つまり、コモンポートから入射した2波長信号を成分波長に分波することもできます。合波/分波を適切に行うには、入射信号にはそのWDMカプラで規定された波長のみが含まれている必要があります。仕様の帯域幅の外側での透過率と結合性能を推計する際には、挿入損失グラフを参考にしていただけます。当社の刻印付きの赤い筐体のWDMカプラには、このデータが付属の製品個別のデータシートにも掲載されています。 ![]() Click to Enlarge グラフ内で網掛けされた領域は、各ポートにおいて規定の性能を満たす帯域幅を示しています。 挿入損失とアイソレーション ここで、Pinは入力パワー(mW)、Poutは出力パワー(mW)です。 カプラの各ポートは、規定された1つの波長では挿入損失が低くなる(高い透過率となる)一方で、他の波長では透過しないよう設計されているため、ポート間のクロストークは最小限に抑えられています。アイソレーションは、規定外の波長の挿入損失として定義されています。そのため、dBの値が高いことがWDMカプラを使用した信号分波の用途には望ましいということになります。たとえば、右のグラフに示されているように、長波長(赤い点線)のアイソレーションは、短波長ポートでは>25 dBです(青い網掛け領域)。
WDMカプラの製造工程ここでは、当社のWDMカプラの製造工程および性能評価のプロセスをステップを追ってご紹介します。 ![]() Click to Enlarge 図ではファイバを短波長ポートは青、長波長ポートは赤に色分けしています。 ステップ 1最初の段階では、2本のファイバのコアが近接するように融着します。これによって、光は融着範囲において、2本のファイバのコア間をエバネセント結合として知られる挙動で伝播します。 この融着工程は、モニタしながら実施され、所望の挿入損失およびアイソレーションの仕様値が得られた時点で終了します。 一方には広帯域光源、もう一方には光スペクトラムアナライザ(OSA)を配置し、これらを使用して融着工程の間、短波長ポートからの出力をモニタします。波長毎の挿入損失はOSAから得たスペクトルから算出します。 ステップ 2WDMカプラの性能を評価するため、ステップ1の後、広帯域光源およびOSAを使用して長波長ポートでの挿入損失を測定します。ステップ1およびステップ2で得られた測定結果を組み合わせることによって、各チャンネルにおける挿入損失とアイソレーションを計算することができます。
![]() Click to Enlarge 1550 nmPMカプラの消光比を測定するための セットアップ 偏波消光比(PER)の測定偏波消光比(PER)は、偏波保持(PM)ファイバまたは装置の、異なる偏光軸間におけるクロスカップリングを抑える能力を表す値です。熱、屈曲、引っ張りなどによるファイバ内部へのストレスはPERを変化させます。 ファイバーカプラ内のPER測定には2通りの方法があります。 最も一般的なのは、低コヒーレンス(非偏光または円偏光)で広帯域な光源、および直線偏光子とパワーメータを用いて消光比を測定する方法です。もう1つは、高コヒーレンスで狭帯域な光源を使用して、偏光計によりPERを測定する方法です。 当社では、プレミアムタイプのPMファイバーカプラの消光比測定には、上記のパワーメータを用いた方法を適用しています。パワーメータのセットアップ例は右の写真ならびに表をご覧ください。広帯域光源からの光を直線偏光子モジュールに入射させ、カプラに入射する偏光状態を設定します。ファイバの一端から入射した光はアナライザーモジュールに送られ、モジュール内の偏光子とパワーメータによって出力光が測定されます。 このアナライザーモジュールの代わりに消光比メータ(型番 ERM100)を使用することも可能です。 PERは以下の手順で測定します。 テスト手順
PminならびにPmaxを測定したら、下の公式を用いて消光比を算出できます。
![]() Click to Enlarge 標準のPMファイバーカプラPN1550R5A1を使用した7時間の温度サイクルテストでは、White-White、White-Redで測定されたPERが広い温度範囲にわたってほぼ一定であったことを示しています。 ![]() White-Whiteを通ると信号出力、 White-Redではタップ出力となります。 温度サイクルテスト氷点下でPMカプラを使用するとカプラ筐体に使用されている接着剤が収縮するため、通常、PER性能は低下します。これは、接着剤の収縮によってカプラ内の光の偏光状態が乱されるために起こります。軟性接着剤を用いることで低温環境での操作による影響を軽減できますが、高温環境においては信頼性の問題が発生します。接着剤は高温で恒久的に軟化し、カプラの光学特性を変化させてしまいます。
レーザによる石英ファイバの損傷このチュートリアルではコネクタ無し(素線)ファイバ、コネクタ付きファイバ、およびレーザ光源に接続するその他のファイバ部品に関連する損傷メカニズムを詳しく説明しています。そのメカニズムには、空気/ガラス界面(自由空間結合時、またはコネクタ使用時)ならびにファイバ内における損傷が含まれます。ファイバ素線、パッチケーブル、または溶融型カプラなどのファイバ部品の場合、損傷につながる複数の可能性(例:コネクタ、ファイバ端面、機器そのもの)があります。ファイバが対処できる最大パワーは、常にそれらの損傷メカニズムの中の最小の限界値以下に制限されます。 損傷閾値はスケーリング則や一般的なルールを用いて推定することはできますが、ファイバの損傷閾値の絶対値は利用方法やユーザ定義に大きく依存します。このガイドは、損傷リスクを最小に抑える安全なパワーレベルを推定するためにご利用いただくことができます。適切な準備と取扱い方法に関するガイドラインにすべて従えば、ファイバ部品は規定された最大パワーレベルで使うことができます。最大パワーの値が規定されていない場合は、部品を安全に使用するために下表の「実用的な安全レベル」の範囲に留めてご使用ください。 パワー処理能力を低下させ、ファイバ部品に損傷を与える可能性がある要因は、ファイバ結合時のミスアライメント、ファイバ端面の汚れ、あるいはファイバそのものの欠陥などですが、これらに限られるわけではありません。特定の用途におけるファイバのパワー処理能力に関するお問い合わせは当社までご連絡ください。 ![]() Click to Enlarge 損傷のないファイバ端 ![]() Click to Enlarge 損傷のあるファイバ端 空気/ガラス界面における損傷空気/ガラス界面ではいくつかの損傷メカニズムが存在する可能性があります。自由空間結合の時、またはコネクタで2本のファイバを結合した時、光はこの界面に入射します。高強度の光は端面を損傷し、ファイバのパワー処理能力の低下や恒久的な損傷につながる場合があります。コネクタ付きのファイバで、コネクタがエポキシ接着剤でファイバに固定されている場合、高強度の光によって発生した熱により接着剤が焼けて、ファイバ端面に残留物が残る可能性があります。
ファイバ素線端面での損傷メカニズムファイバ端面での損傷メカニズムはバルクの光学素子の場合と同様なモデル化ができ、UV溶融石英(UVFS)基板の標準的な損傷閾値を石英ファイバに当てはめることができます。しかしバルクの光学素子とは異なり、光ファイバの空気/ガラス界面においてこの問題に関係する表面積やビーム径は非常に小さく、特にシングルモードファイバの場合はそれが顕著です。 パワー密度が与えられたとき、ファイバに入射するパワーは、小さいビーム径に対しては小さくする必要があります。 右の表では光パワー密度に対する2つの閾値が記載されています。理論的な損傷閾値と「実用的な安全レベル(実用的な安全レベル)」です。一般に、理論的損傷閾値は、ファイバ端面の状態も結合状態も非常に良いという条件で、損傷のリスク無しにファイバの端面に入射できる最大パワー密度の推定値を表しています。「実用的な安全レベル」のパワー密度は、ファイバ損傷のリスクが極めて小さくなる値を示しています。ファイバまたはファイバ部品をこの実用的な安全レベルを超えて使用することは可能ですが、その時は取扱い上の注意事項を適切に守り、使用前にローパワーで性能をテストする必要があります。 シングルモードならびにマルチモードファイバの実効面積の計算 例として、シングルモードファイバSM400を400 nmで使用した時のモードフィールド径(MFD)は約Ø3 µmで、SMF-28 Ultraを1550 nmで使用したときのモードフィールド径(MFD)はØ10.5 µmです。これらのファイバの実効面積は下記の通り計算します。 SM400 Fiber: Area = Pi x (MFD/2)2 = Pi x (1.5 µm)2 = 7.07 µm2 = 7.07 x 10-8 cm2 ファイバ端面が対応できるパワーを推定するには、パワー密度に実効面積を乗じます。なおこの計算は均一な強度プロファイルを想定しています。しかしほとんどのレーザービームでは、シングルモード内でガウス分布を示すため、ビームの端よりも中央のパワー密度が高くなります。よって、これらの計算は損傷閾値または実用的安全レベルに対応するパワーとは若干異なることを考慮する必要があります。連続光源を想定して上記のパワー密度の推定値を使用すると、それぞれのパワーは下記のように求められます。 SM400 Fiber: 7.07 x 10-8 cm2 x 1 MW/cm2 = 7.1 x 10-8 MW = 71 mW (理論的損傷閾値) SMF-28 Ultra Fiber: 8.66 x 10-7 cm2 x 1 MW/cm2 = 8.7 x 10-7 MW = 870 mW (理論的損傷閾値) マルチモードファイバの実効面積は、そのコア径によって定義されますが、一般にシングルモードファイバのMFDよりもはるかに大きくなります。当社では最適な結合を得るためにコア径のおよそ70~80%にビームを集光することをお勧めしています。マルチモードファイバでは実効面積が大きくなるほどファイバ端面でのパワー密度は下がるので、より大きな光パワー(通常キロワットオーダ)を入射しても損傷は生じません。 フェルール・コネクタ付きファイバに関する損傷メカニズム![]() Click to Enlarge コネクタ付きシングルモード石英ファイバに入力可能なパワー処理限界値(概算)を示したグラフ。各線はそれぞれの損傷メカニズムに応じたパワーレベルの推定値を示しています。 入力可能な最大パワーは、損傷メカニズムごとに制限されるパワーのうちの一番小さな値(実線で表示)によって制限されます。 コネクタ付きファイバのパワー処理能力に関しては、ほかにも考慮すべき点があります。ファイバは通常、エポキシ接着剤でセラミック製またはスチール製のフェルールに取り付けられています。光がコネクタを通してファイバに結合されると、コアに入射せずにファイバを伝搬する光は散乱されてファイバの外層からフェルール内へ、さらにフェルール内でファイバを保持する接着剤へと伝搬します。光の強度が大きいとエポキシ接着剤が焼け、それが蒸発して残留物がコネクタ端面に付着します。これによりファイバ端面に局所的に光を吸収する部分ができ、それに伴って結合効率が減少して散乱が増加するため、さらなる損傷の原因となります。 エポキシ接着剤に関連する損傷は、いくつかの理由により波長に依存します。一般に、光の散乱は長波長よりも短波長で大きくなります。短波長用のMFDの小さなシングルモードファイバへの結合時には、ミスアライメントに伴ってより多くの散乱光が発生する可能性があります。 エポキシ樹脂が焼損するリスクを最小に抑えるために、ファイバ端面付近のファイバとフェルール間にエポキシ接着剤の無いエアギャップを有するファイバーコネクタを構築することができます。当社の高出力用マルチモードファイバーパッチケーブルでは、このような設計のコネクタを使用しております。 複数の損傷メカニズムがあるときのパワー処理限界値を求める方法ファイバーケーブルまたはファイバ部品において複数の損傷要因がある場合(例:ファイバーパッチケーブル)、入力可能なパワーの最大値は必ずファイバ部品構成要素ごとの損傷閾値の中の一番小さな値により決まります。この値が一般的にはパッチケーブルの端面に入射可能な最大のパワーを表します(出力パワーではありません)。 右のグラフは、シングルモードパッチケーブルにおけるファイバ端面での損傷とコネクタでの損傷に伴うパワー処理限界の推定値を例示しています。 ある波長におけるコネクタ付きファイバの総合的なパワー処理限界値は、その波長に対する2つの制限値の小さい方の値(実線)によって制限されます。488 nm付近で使用しているシングルモードファイバは主にファイバ端面の損傷(青い実線)によって制限されますが、1550 nmで使用しているファイバはコネクタの損傷(赤い実線)によって制限されます。 マルチモードファイバの実効面積はコア径で定義され、シングルモードファイバの実効面積より大きくなります。その結果、ファイバ端面のパワー密度が小さくなり、大きな光パワー(通常キロワットオーダ)を入射してもファイバに損傷は生じません(グラフには表示されていません)。しかし、フェルール・コネクタの損傷による限界値は変わらないため、マルチモードファイバが処理できる最大パワーはフェルールとコネクタによって制限されることになります。 上記の値は、取り扱いやアライメントが適切で、それらによる損傷が生じない場合のパワーレベルです。また、ファイバはここに記載されているパワーレベルを超えて使用されることもあります。しかし、そのような使い方をする場合は一般に専門的な知識が必要で、まずローパワーでテストして損傷のリスクを最小限に抑える必要があります。その場合においても、ハイパワーで使用するファイバ部品は消耗品と捉えた方が良いでしょう。 ファイバ内の損傷閾値空気/ガラス界面で発生する損傷に加え、ファイバのパワー処理能力はファイバ内で発生する損傷メカニズムによっても制限されます。この制限はファイバ自体が本質的に有するもので、すべてのファイバ部品に適用されます。ファイバ内の損傷は、曲げ損失による損傷とフォトダークニングによる損傷の2つに分類されます。 曲げ損失 特殊ファイバに分類されるダブルクラッドファイバは、コアに加えてファイバのクラッド(2層目)も導波路として機能するため、曲げ損失による損傷のリスクが抑えられます。クラッドと被覆の界面の臨界角をコアとクラッドの界面の臨界角より大きくすることで、コアから漏れた光はクラッド内に緩く閉じ込められます。その後、光はセンチメートルからメートルオーダーの距離に渡って漏れ出しますが、局所的ではないため損傷リスクは最小に留められます。当社ではメガワットレベルの大きなパワーにも対応するNA 0.22のダブルクラッドマルチモードファイバを製造、販売しております。 フォトダークニング しかし、上記の対応をとったとしても、UV光や短波長に使用したファイバはいずれフォトダークニングが生じます。よってこれらの波長で使用するファイバは消耗品としてお考えください。 光ファイバの準備ならびに取扱い方法一般的なクリーニングならびに操作ガイドライン
ハイパワーでファイバを使用するための要点
![]()
![]()
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|