アカウント作成  |   ログイン

View All »Matching Part Numbers


カートは空です
         

Ø12 mm~Ø12.7 mm(Ø1/2インチ)スイベル式ポストホルダ


  • Precision Wide, Square Relief Provides a Highly
    Stable Two-Line Contact with the Mounting Post
  • Each Post Holder Includes One Spring-Loaded
    Hex Locking Thumbscrew

TS25H

UPH6

UPH4

UPH3

UPH2

UPH1.5

UPH1

Front

Back

UPH2

360° Continuously
Adjustable

Magnets in Base Provide Holding
Force Before Lock Down

Related Items


Please Wait

スイベル式ポストホルダの特長

特長

  • アセンブリ構築にかかる時間を短縮
  • バネ付きつまみネジがポストを仮固定
  • スイベル式クランプフォークと磁石付きベースによってアライメントが簡単

当社のØ12 mm~Ø12.7 mmスイベル式ポストホルダは、光学テーブルまたはブレッドボード上にØ12 mm~Ø12.7 mm光学ポストを取付けやすくする設計になっています。このポストホルダにはスイベル式ベースが付いており、ブレッドボード上の取付け穴の位置を選びません。ベース部分の磁石によって、最終的な位置決めの前に仮固定が可能です。また、ベースには穴が空いているので、ポストを光学テーブルに接触するまで下げて高さ調整することが可能です。

このポストホルダは、当社の標準型のポストホルダと基本的に同じ特長を有しています。右図にあるように、部品の長さ全体に垂直に広めのリリーフカット(逃げ加工)が施されています。これによってポストとポストホルダが2本の線で接触するので高い安定性を得ることができます。このリリーフカットがない設計のポストホルダでは、保持力が弱く、時間経過とともにポストの位置が下方向にずれる可能性があります。各ポストホルダには5 mmの六角バネ式つまみネジが1個付いています。つまみネジは追加購入も可能です(下記参照)。

当社の標準型のポストホルダは当社のスイベルベースアダプタをお使いいただくことでスイベル式ポストホルダに変換できます。

Insights into Best Lab Practices

Scroll down to read about a few things we consider when setting up lab equipment.

  • Clamping Forks: Tip for Maximizing the Holding Force
  • Optical Tables: Clamping Forks and Distortion of the Table's Surface
  • Post Holders: Rectangular Channel in the Inner Bore

Click here for more insights into lab practices and equipment.

 

Clamping Forks: Tip for Maximizing the Holding Force

Clamping force applied by the CL2 clamping fork
Click to Enlarge

Figure 2: More than half the total applied force (FTotal) holds the object, since L1 > L2. The height of the left leg of this CL2 clamp is variable to compensate for the object's height. This allows the clamp's top surface and the mounting surface to be made parallel.**
Clamping force applied by the CLA5 clamping fork
Click to Enlarge

Figure 1: Less than half the total applied force (FTotal) holds the object, since L1 < L2. The clamp illustrated above is the CL5A.

Clamped objects can be fairly easy to move when the torqued screw in the clamp's slot is positioned too far from the object. Correct positioning of the screw protects clamped objects from being knocked out of position.

To maximize the clamping force, position the screw as close as possible to the object.**

This works since clamps like CL5A and CL2 (Figures 1 and 2, respectively) divide the torqued screw's applied force (FTotal) between two points.

Clamping force F2 is applied to the object. The value of F2 is a percentage of FTotal and depends on L1 and L2, as described below. The remainder (F1) of the total force is applied through the opposite end of the clamp.

The following equations can be used to calculate the two applied forces.

Force Applied to
Object:
Force Applied to
Other Contact Point:

These equations show that the clamping force on the object increases as the distance between the object and screw decreases. The force supplied by the torqued screw is evenly divided between F1 and F2 when L1 and L2 are equal.

**Note that maximizing the clamping force also requires both the top surface of the clamp and the area it contacts on the object to be parallel with the mounting surface, as depicted in Figures 1 and 2.

If the tangent at the interface between the clamp and object is not parallel to the mounting surface, the force applied to the object will be divided between pressing it into and pushing it across the mounting surface. The force directed along the mounting surface may, or may not, be sufficient to translate the object.

To accommodate different object heights, clamps like the CL2 have one threaded, variable-length leg, which is shown on the left in Figure 2. The number of threads between the clamp and mounting surface should be adjusted to compensate for the height of the object and to keep the clamp's top surface level with the table.   

Date of Last Edit: Dec. 4, 2019

 

Optical Tables: Clamping Forks and Distortion of the Table's Surface

Optical table composite construction
Click to Enlarge

Figure 3: The construction of a Nexus table / breadboard includes a (1) top skin, (2) bottom skin, (3) side finishing trim, (4) side panels, and (5) honeycomb core. The stainless steel top and bottom skins are 5 mm thick.

Clamping forks are more rigid than the mounting surface of composite optical tables. It might be expected that the spine of the clamping fork would bend with the force exerted by the screw as the torque is increased. Instead, the screw will pull the skin of the table up and out of flat before the clamping fork deforms. Due to this, clamping forks should be used with care when securing components to optical tables. Clamping arms, which are discussed in the following, are alternatives to clamping forks that are less likely to deform the table's mounting surface.

Optical Table Construction
Optical tables and breadboards with composite construction (Figure 3) are designed to be rigid while providing vibration damping. The 5 mm thick, stainless steel top skin is manufactured to be flat, but a localized force can deform it. When the top skin is deformed, optical components will not sit flat, and optical system alignment and performance can be negatively affected.

Clamping Forks
Standard clamping forks are installed with one edge placed on the table's surface and the opposite edge on the object (Figure 4). Between these two edges, there is clearance between the bottom of the clamp and the surface of the table. This bridge makes it possible to use a single screw to both secure the clamp to the table and exert a holding force on the object.

When the clamp is secured by torqueing the screw, the screw pulls up on the top skin of the table (Figure 5).

As the torque on the screw increases, the top skin of the table rises. Not only does pulling up on the table surface risk permanently damaging the table, this can also disturb the alignment of the optical component the clamp is being used to secure. By lifting the table's skin, the mounting surface under the clamped object tilts.

Clamping arms do not create a bridge over the mounting surface
Click to Enlarge

Figure 6: The POLARIS-CA1/M clamping arm has a slot that accepts a mounting screw, a separate screw that applies a clamping force to an installed post, and identical top and bottom surfaces. Since a nearly continuous track around the surface of the clamping arm is in contact with the mounting surface, clamping arms cause negligible bridging effects.
Clamping fork pulling up on and deforming mounting surface of optical table
Click to Enlarge

Figure 5: Torqueing the screw creates a force that pulls up on the table's top skin. The lifted skin tilts the mounting surface and can induce angular deviation of the object. This effect is exaggerated in the above image for illustrative purposes.
Bridge created by clamping fork
Click to Enlarge

Figure 4: A standard clamping fork, such as the CL5A, contacts the table along only one edge. The opposite edge is in contact with the object to be secured. A bridge forms between the two. The screw that applies the clamping force is not shown.

Clamping Arms
Clamping arms, such as the POLARIS-CA1/M, shown in Figure 6, are designed to secure a post while minimally deforming the mounting surface.

The clamping arm in Figure 6 differs from clamping forks in two significant ways. One is the surface area that makes contact with the optical table, which is highlighted in red, and the other is the method used to secure the post.

The area in contact with the optical table makes a nearly continuous loop around the base of the clamp. The contact area is flat and flush with the table when the clamp is installed. The only break in the loop is a narrow slot in the vise used to grip the post. 

This design uses two screws, instead of the clamping fork's single screw. One screw (not shown) secures the clamp to the table, and the other (indicated) is tightened to grip the post. Since one screw is not required to perform both tasks, it is not necessary for this clamping arm to form a bridge between the clamped object and the optical table.

Although the contact area is a loop, and not a solid surface, this clamp causes negligible distortion of the mounting surface. This is due to the open area inside the contact surface being narrow and surrounded by the sides of the clamp, which resist the force pulling up on the table.

Date of Last Edit: Dec. 4, 2019

 

Post Holders: Rectangular Channel in the Inner Bore

Contact Point between post holder and post
Click to Enlarge

Figure 8: Top view. The three contact locations between the post and post holder, highlighted in red, prevent the post from translating or rotating around the X or Y axes. Friction resists the post's translation and rotation around the Z axis.
Broached channel in post holder
Click to Enlarge

Figure 7: A channel with sharp edges is machined into the inner bore of Thorlabs' post holders.
Linear Broach
Figure 9: A broach, such as the one illustrated above, has a row of teeth, the next taller than the previous. With the teeth in contact with the material, a machine pulls the broach across the surface. Each tooth removes a small amount of material, and the depth of the channel created by the broach equals the overall difference in tooth height.

All of Thorlabs' post holders include a channel, with straight parallel edges, running the length of the inner bore (Figure 7). Tightening the setscrew pushes the post against the two edges of the channel (Figure 8). Since the edges of the channel are separated by a wide distance, approximately half the inner diameter of the post holder, the seating of the post against the channel's edges is stable and repeatable.

Contact with the two edges of the channel eliminates four of the post's six degrees of freedom, since the edges block the post from translating along or rotating around either the Y or Z axis. In addition, the friction between the side of the post and the edges of the channel resists the post's movement along and around the X axis, which are the post's two remaining degrees of freedom.

Without the channel in the inner bore, there would be a single line of contact between the post and post holder. The position of the post would not be stable, since the post would be free to rotate around the Z axis and shift along the Y axis.

Even if this instability resulted in submicron-scale unwanted shifts in each component's position in an optical setup, the cumulative effect could have a significant negative impact on system performance. In addition, more frequent realignment of the system could be required.

Broaching
The channel's edges must be straight and free of bumps and roughness to hold the post stable. These post holders have straight, sharp edges when examined on a micron scale. If the edges are not completely linear, the post might rock in the holder, and / or it may not be possible to repeatably position the post in the holder.

The smooth, straight edges of the channel are achieved using a machining process called broaching. A broach (Figure 9) resembles a saw whose teeth increase in height along its length.

As the broach is pulled along a surface, each tooth removes a small amount of material. The total depth of the channel cut by the broach equals to the overall difference in tooth height (H2 - H1).

Compared with other approaches for creating channels, broaching is preferred due to its ability to provide straight profiles while being compatible with high-volume production.

Date of Last Edit: Dec. 11, 2019


Posted Comments:
tcohen  (posted 2012-02-29 15:51:00.0)
Response from Tim at Thorlabs: Thank you for your feedback. The TR50/M will be able to fit in the UPH2/M and you will be able to adjust its height with the thumbscrew. However, because the length of the post is shorter than the length of the post holder, the TR50/M will be under the top of the UPH2/M when sitting near the bottom. If this is a concern, we do offer shorter UPH at http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1982&pn=UPH1 and taller posts at http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1266.
user  (posted 2012-02-28 11:55:56.0)
TR50/M (50 mm) is compatible with UPH2/M(50.8 mm) or not? Is it possible to use TR50/M (50 mm) with UPH2/M(50.8 mm)? Thank you.
mathieu.perrin  (posted 2010-03-24 16:37:30.0)
The universal post holder is a component I personally highly recommend. No need to find a clamp, no need to change everything when you realize youre not right in front of the hole, magnets give a certain stiffness while allowing to move the optics parallel to the table : setting up an experiment suddenly becomes twice easier!

Ø12 mm~Ø12.7 mm(Ø1/2インチ)スイベル式ポストホルダ、磁石付き

UPH Post Holder Application
Click to Enlarge
View Imperial Product List
型番数量Description
UPH31Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ3インチ (インチ規格)
TR31Ø1/2インチポスト、#8-32ネジ、1/4”-20タップ穴付き、長さ3インチ(インチ規格)
KM100C1キネマティックマウント、高さ33 mmまでの長方形光学素子用、右手配列
View Metric Product List
型番数量Description
UPH75/M1Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ75 mm (ミリ規格)
TR75/M1Ø12.7 mmポスト、M4ネジ、M6タップ穴付き、長さ75 mm(ミリ規格)
KM100C1キネマティックマウント、高さ33 mmまでの長方形光学素子用、右手配列
UPH Drawing
  • ベースが360°回転するのでアライメント用の取付け穴の選択が容易
  • ポストがベースを貫通するのでビーム高さを最小にすることが可能
  • ベースの強力な磁石によって、光学テーブルへの固定前に仮固定が可能
  • 位置決めを容易にするバネ付き六角固定つまみネジ
  • 30 mm~75 mmの製品は5個入りパックでもご用意

当社のスイベル式ポストホルダは、新しいアセンブリを簡単に作ることができる特長を有しています。ポストホルダのスイベル式ベースによって、光学マウントを所望の位置に置いてベースを旋回できるので、光学テーブル上の配置に便利な取付け穴を選択することができます。また、ポストホルダのベースには強力な保持力の磁石が付いているので、最終的な位置固定の前に暫定的な位置決めが可能です。また、ベースには穴が空いているので、Ø12 mm~Ø12.7 mm(Ø1/2インチ)のTRシリーズポストを光学テーブルに接触するまで下げて最大限の高さ調整が可能です。このスイベル式ポストホルダには、バネ式六角固定つまみネジTS6H/M(5 mm)が付いています。このつまみネジは最大トルク(3.2 N·m)を超えて締め付けないでください。ニーズの高いポストホルダ製品は、5個入りパックでもご提供しています。

こちらのポストを磁石無しでご希望の場合は当社までお問い合わせください。

+1 数量 資料 型番 - インチ規格 定価(税抜) 出荷予定日
UPH1 Support Documentation
UPH1Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ1インチ (インチ規格)
¥4,186
Today
UPH1-P5 Support Documentation
UPH1-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ1インチ、5個入り (インチ規格)
¥20,398
3-5 Days
UPH1.5 Support Documentation
UPH1.5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ1.5インチ (インチ規格)
¥4,256
Today
UPH1.5-P5 Support Documentation
UPH1.5-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ1.5インチ、5個入り (インチ規格)
¥20,749
3-5 Days
UPH2 Support Documentation
UPH2Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ2インチ (インチ規格)
¥4,290
Today
UPH2-P5 Support Documentation
UPH2-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ2インチ、5個入り (インチ規格)
¥20,961
Today
UPH3 Support Documentation
UPH3Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ3インチ (インチ規格)
¥4,398
3-5 Days
UPH3-P5 Support Documentation
UPH3-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ3インチ、5個入り (インチ規格)
¥21,523
3-5 Days
UPH4 Support Documentation
UPH4Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ4インチ (インチ規格)
¥4,714
3-5 Days
UPH6 Support Documentation
UPH6Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ6インチ (インチ規格)
¥5,064
Today
+1 数量 資料 型番 - ミリ規格 定価(税抜) 出荷予定日
UPH30/M Support Documentation
UPH30/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ30 mm (ミリ規格)
¥4,186
Today
UPH30/M-P5 Support Documentation
UPH30/M-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ30 mm、5個入り (ミリ規格)
¥20,398
Today
UPH40/M Support Documentation
UPH40/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ40 mm (ミリ規格)
¥4,256
Today
UPH40/M-P5 Support Documentation
UPH40/M-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長40 mm、5個入り (ミリ規格)
¥20,749
Today
UPH50/M Support Documentation
UPH50/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ50 mm (ミリ規格)
¥4,290
Today
UPH50/M-P5 Support Documentation
UPH50/M-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ50 mm、5個入り (ミリ規格)
¥20,961
Today
UPH75/M Support Documentation
UPH75/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ75 mm (ミリ規格)
¥4,398
Today
UPH75/M-P5 Support Documentation
UPH75/M-P5Ø12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ75 mm、5個入り (ミリ規格)
¥21,523
Today
UPH100/M Support Documentation
UPH100/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ100 mm (ミリ規格)
¥4,714
Today
UPH150/M Support Documentation
UPH150/MØ12 mm~Ø12.7 mmスイベル式ポストホルダ、バネ式六角固定つまみネジ付き、長さ150 mm (ミリ規格)
¥5,064
Today

バネ付きM6 x 1.0つまみネジ、ポストホルダ用

Specification
Maximum Torquea28 in·lbs (3.2 N·m)
  • ネジの頭がつぶれる可能性があるので、つまみネジの締付けにL型六角レンチの使用はお勧めいたしません。

Click to Enlarge

つまみネジTS25Hの分解図
TS25H Mechanical Drawing
つまみネジの図面

このアルマイト加工アルミニウム製つまみネジには、バネが組み込まれたDelrin®チップが付いており、最終的な位置調整を行なうまでポストの位置をしっかりと保持します。その後5 mm(TS6H/M用)ボール(六角)ドライバを用いて、ポストが動かないようにしっかり固定できます。ボールドライバのサイズは、つまみネジ部分に刻印されているので識別が簡単です。

TS6H/MにはM6 x 1.0ネジが付いており、当社のØ12 mm~Ø12.7 mm(Ø1/2インチ)ポストホルダに対応しています。推奨最大トルクは3.2 N·mです。ネジの頭がつぶれる可能性があるので、つまみネジの締付けにL型六角レンチの使用はお勧めいたしません。

バネ付きチップが無しのつまみネジをご要望の場合は、真空対応つまみネジをお勧めいたします。あるいは、1.5 mmのボールドライバを用いてつまみネジ前面にある止めネジ(セットスクリュ)を緩め、チップを取り外すこともできます。1番右の写真で示されている順序で、バネとチップを取り外すことができます。ただし、その際つまみネジの接触面の中央には穴が開き、真空対応つまみネジの接触面とは異なった形体になります。

つまみネジは1個、または5個入りのセットで別売しています。

+1 数量 資料 型番 - インチ規格 定価(税抜) 出荷予定日
TS25H Support Documentation
TS25Hバネ付き3/16インチ六角固定つまみネジ、1/4”-20ネジ (インチ規格)
¥346
Today
TS25H-P5 Support Documentation
TS25H-P5バネ付き3/16インチ六角固定つまみネジ、1/4”-20ネジ、5個入り (インチ規格)
¥1,725
Today
+1 数量 資料 型番 - ミリ規格 定価(税抜) 出荷予定日
TS6H/M Support Documentation
TS6H/Mバネ付き5 mm六角固定つまみネジ、M6ネジ (ミリ規格)
¥346
Today
TS6H/M-P5 Support Documentation
TS6H/M-P5バネ付き5 mm六角固定つまみネジ、M6ネジ、5個入り(ミリ規格)
¥1,725
Today

スイベルベースアダプタ

  • Ø12 mm~Ø12.7 mm(Ø1/2インチ)ポストホルダをスイベル式ポストホルダータイプのマウントに変換
  • 360°回転するスイベルベースと既存のポストホルダを、M6キャップスクリュで固定
  • ベースの磁石により、初期セットアップ時にブレッドボード上に光学部品の仮固定が可能
  • 5個入りパックでもご用意

こちらの360°スイベルベースアダプタを使用すると、当社のØ12 mm~Ø12.7 mm(Ø1/2インチ)用の標準ポストホルダに、スイベル機能と磁石による仮固定の機能を付加することができます。これにより光学システムの組み立て時間を短縮することができます。また、スイベル設計なので、狭いスペースに多数の光学部品を取り付けるのに適しています。こちらのアダプタはアルマイト加工のアルミニウム製です。また、上記のスイベル式ポストホルダではポストの位置をテーブル面まで下げられましたが、こちらのアダプタの場合はそこまでの高さ調整機能はございませんのでご注意ください。

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
UPHA Support Documentation
UPHAスイベルベースアダプタ
¥2,856
Today
UPHA-P5 Support Documentation
UPHA-P5スイベルベースアダプタ、5個入り
¥13,997
Today
ログイン  |   マイアカウント  |   Contacts  |   個人情報保護方針  |   ホーム  |   FAQ  |   Site Index
Regional Websites:East Coast US | West Coast US | Europe | Asia | China
Copyright © 1999-2020 Thorlabs, Inc.
Sales: +81-3-6915-7701
Tech Supports: +81-3-6915-7701


High Quality Thorlabs Logo 1000px:Save this Image