## Reflection Coefficient of the Entire System (Eq 2)

$$
\tilde{r}=\frac{\left[\tilde{r}_{p}+\tilde{r}_{s} e^{-i \Delta}\right]}{2} \quad \begin{aligned}
& \text { Eq (1) in the paper. The tilde-hat indicates complex numbers (i.e. the amplitude reflection } \\
& \text { coefficients are complex quantities, since the metal's refractive index is a complex value). }
\end{aligned}
$$

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left[\tilde{r}_{p}+\tilde{r}_{s} e^{-i \Delta}\right]}{2} \frac{\left[\tilde{r}_{p}^{*}+\tilde{r}_{s}^{*} e^{+i \Delta}\right]}{2}
$$

The superscript asterisk indicates a complex conjugate (i.e. multiplying all imaginary quantities by -1 ).

A complex number multiplied by its complex conjugate is the magnitude squared.
Multiply out the numerator.

$$
\begin{aligned}
& =\frac{\tilde{r}_{p} \tilde{r}_{p}^{*}+\tilde{r}_{p} \tilde{r}_{s}^{*} e^{+i \Delta}+\tilde{r}_{p}^{*} \tilde{r}_{s} e^{-i \Delta}+\tilde{r}_{s} \tilde{r}_{s}^{*} e^{i(\Delta-\Delta)}}{4} \\
& =\frac{\tilde{r}_{p} \tilde{r}_{p}^{*}+\tilde{r}_{p} \tilde{r}_{s}^{*} e^{+i \Delta}+\tilde{r}_{p}^{*} \tilde{r}_{s} e^{-i \Delta}+\tilde{r}_{s} \tilde{r}_{s}^{*}}{4} \\
& =\frac{\tilde{r}_{p} \tilde{r}_{p}^{*}+\tilde{r}_{s} \tilde{r}_{s}^{*}+\tilde{r}_{p} \tilde{r}_{s}^{*} e^{+i \Delta}+\tilde{r}_{p}^{*} \tilde{r}_{s} e^{-i \Delta}}{4} \\
& =\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+\tilde{r}_{p} \tilde{r}_{s}^{*} e^{+i \Delta}+\tilde{r}_{p}^{*} \tilde{r}_{s} e^{-i \Delta}}{4}
\end{aligned}
$$

## Reflection Coefficient of the Entire System (Eq 2)

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+\tilde{r}_{p} \tilde{r}_{s}^{*} e^{+i \Delta}+\tilde{r}_{p}^{*} \tilde{r}_{s} e^{-i \Delta}}{4}
$$

$$
\tilde{r}_{p}=r_{p_{-} r e a l}+i r_{p_{-} i m a g}=r_{p} e^{+i \phi_{p}}
$$

Represent the complex reflection coefficients ( $\tilde{r}$ ) explicitly in terms of their magnitude (no tilde):

$$
\tilde{r}_{p}^{*}=r_{p_{-} \text {real }}-i r_{p_{-} i m a g}=r_{p} e^{-i \phi_{p}}
$$

$$
r=\sqrt{r_{\text {real }}^{2}+r_{\text {imag }}^{2}}
$$

$$
\tilde{r}_{s}=r_{s_{-} \text {real }}+i r_{s_{-} i m a g}=r_{s} e^{+i \phi_{s}}
$$

and phase:

$$
\tilde{r}_{s}^{*}=r_{s_{-} \text {real }}-i r_{s_{-} i m a g}=r_{s} e^{-i \phi_{s}}
$$



Substitute the magnitude-phase representations of the complex amplitude reflection coefficients into the equation at the top of this slide.

$$
\begin{aligned}
& |r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+r_{p} e^{+i \phi_{p}} r_{s} e^{-i \phi_{s}} e^{+i \Delta}+r_{p} e^{-i \phi_{p}} r_{s} e^{+i \phi_{s}} e^{-i \Delta}}{4} \\
& |r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+r_{p} r_{s} e^{+i\left(\phi_{p}-\phi_{s}+\Delta\right)}+r_{p} r_{s} e^{-i\left(\phi_{p}-\phi_{s}+\Delta\right)}}{4}
\end{aligned}
$$

## Reflection Coefficient of the Entire System (Eq 2)

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+r_{p} r_{s} e^{+i\left(\phi_{p}-\phi_{s}+\Delta\right)}+r_{p} r_{s} e^{+i\left(\phi_{p}-\phi_{s}+\Delta\right)}}{4}
$$

The last two terms in the numerator are the same, except for the sign on the exponential.

Use the Euler equation (trig identity):

$$
\cos \theta=\frac{e^{i x}+e^{-i x}}{2} \text { where } x=\phi_{p}-\phi_{s}+\Delta
$$

to obtain:

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+2 r_{p} r_{s} \cos \left(\phi_{p}-\phi_{s}+\Delta\right)}{4}
$$

$$
\text { Define } \phi=\phi_{p}-\phi_{s}
$$

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+2 r_{p} r_{s} \cos (\phi+\Delta)}{4}
$$

## Reflection Coefficient of the Entire System (Eq 2)

$$
|r|^{2}=\tilde{r} \tilde{r}^{*}=\frac{\left|r_{p}\right|^{2}+\left|r_{s}\right|^{2}+2 r_{p} r_{s} \cos (\phi+\Delta)}{4}
$$

The last two terms in the numerator are the same, except for the sign on the exponential.
The lowercase ' $r$ ' refers to the optical amplitude reflection coefficients.
Uppercase ' $R$ ' are used to refer to optical power reflection coefficients.

$$
\begin{aligned}
\mathrm{R} & =|r|^{2} \\
R_{p} & =\left|r_{p}\right|^{2} \\
R_{s} & =\left|r_{s}\right|^{2}
\end{aligned}
$$

When these representations are substituted into the equation at the top of this slide,

$$
R=|r|^{2}=\frac{R_{p}+R_{s}+2 \sqrt{R_{p} R_{s}} \cos (\phi+\Delta)}{4}
$$

It is the square root that is missing from Eq. 2 in the paper.

