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System Bandwidth and Pulse Shape Distortion

This Lab Fact investigated the distortion of signals output by a system with limited 3 dB
bandwidth. The input signals were inherently broadband, periodic rectangular pulse trains with
different duty cycles and repetition rates. A function generator supplied the input signals, and
the system included a CLD1010LP Combined Mount and Current and Temperature Controller
for Fiber-Pigtailed Laser Diodes, a fiber-pigtailed laser diode, a DETO2AFC FC / PC Coupled
Photodetector, and a 1 GHz oscilloscope.

The 3 dB bandwidth of the system was found from its frequency response magnitude. After
measuring the frequency-dependent scaling factors relating the amplitudes of the input and
output signal components, the 3 dB bandwidth was identified as the range of frequencies over
which the normalized scaling factors were at least 0.707.

Results of increasing the input signal's repetition rate was shown using Fourier series analysis
and demonstrated experimentally. The number of input signal components with frequencies
above the system's 3 dB cutoff frequency increased with repetition rate, and the subsequent
strong attenuation of these components in the output signal resulted in output pulse distortion.
It was also shown that decreasing the duty cycle of the input signal increased output pulse
distortion. This work demonstrated the importance of considering the impact of the system's

3 dB bandwidth, the input signal's repetition rate, and the input signal's duty cycle on the
distortion of the output signal.
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1 Introduction and Background

Rectangular pulse trains are used in a wide variety of test and measurement applications in
both research and industry. When the input to a system is a rectangular pulse train, often the
desired output signal is also a rectangular pulse train. One requirement for obtaining a high-
fidelity output signal is compatibility between the bandwidths of the system and the input
signal. Insufficient system bandwidth will result in a distorted output signal, with less-abrupt
transitions and broader features than in the input signal. In an extreme case of insufficient
bandwidth, an input rectangular pulse train would be output as a sine wave.

During this Lab Fact investigation, a series of rectangular pulse trains from a function generator
were input to a laser diode controller, whose modulated output current signals were used to
drive a fiber-pigtailed laser diode. The modulated optical intensity signals from the laser diode
were detected and compared with the rectangular pulse trains from the function generator
using Fourier series and time-domain approaches. This analysis was used to explore the
influence of the repetition rate of the input signal, the duty cycle of the input signal, and the
bandwidth of the system on the distortion of the measured optical output pulses.

1.1 Fourier Series Expansion of Rectangular Pulse Trains

An ideal periodic rectangular pulse train is shown in Figure 1. The period (T) determines the
pulse spacing. The signal instantaneously transitions between low and high states, whose
amplitudes are 0 and X, respectively.

The fractional duty cycle (k) is the fraction of time the signal dwells in the high state. The width
(xT) of each ideal rectangular pulse is the product of the period and the fractional duty cycle.
The user specifies the duty cycle, repetition rate, amplitude, and DC offset of the rectangular
pulse train based on the requirements of the application.

X(t)
A

X

-
0 «T T T+«T 2T 2T+«T t

Figure 1 Ideal train of rectangular pulses, with instantaneous transitions between low and high signal
states at perfectly regular intervals.
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Waveforms, such as rectangular pulse trains, that are periodic in time (t) can be represented
using a Fourier series?, which includes sums of mutually orthogonal sine and cosine functions,

A [ee) oo
x(t) = =+ A,cos(2mnf,t) + B,sin(2rnfyt) + C 1
2 2 g

The first term in Eq. 1 is a constant calculated using the DC component coefficient (4,). The
summations in the second and third terms extend to infinity. Each sine and cosine function in
these summations is multiplied by a Fourier coefficient (4,, or B, respectively), which depends
on the index of summation (n). The coefficients for a rectangular pulse train,

AO = kX ’ (za)
A, = :—n [sin(2mnk)] (2b)

and
B, = f—n [1 — cos(2mnk)] ) (2¢)

are calculated using signal parameters. All coefficients are proportional to the high state
amplitude. The values of 4,, and B,, are strongly dependent on the index and the fractional duty
cycle. Their product is in the arguments of the sine and cosine functions in Eqg. 2b and 2c, and
both coefficients also have n in their denominators.

The constant (C) in Eq. 1 controls the DC offset of the rectangular pulse train. In this work, C
corresponds to the constant component of current used to drive the laser diode, as described
in Section 2. For the discussion in this section, C was set to zero and X was set to one.

In the summations included in Eq. 1, the oscillation frequency of each trigonometric term is the
fundamental frequency (f, ) multiplied by n, which is a positive integer. The terms of each
summation compose a harmonic series. The first harmonic frequency is equal to the
fundamental frequency: the first harmonic frequency is found by multiplying the fundamental
frequency by one, the index of the term.

The repetition rate of a rectangular pulse train and the fundamental frequency of its Fourier
series expansion are equal. Therefore, the repetition rate also equals the first harmonic
frequency.

Modeled Rectangular Pulses

Each of the six plots in Figure 2 compares an ideal rectangular pulse (dashed-black outline) of a
20% duty cycle pulse train with a different modeled version (blue curve) of it. Eq. 1 was used to
calculate the modeled waveforms, and the maximum index used in the calculations ranged
from one to nine.

The modeled waveforms were used to define the high and low states of the ideal pulses. The
high and low state amplitudes equaled the minimum and maximum amplitudes of the modeled

! Ferrel G. Stremler, Introduction to Communication Systems, Third Edition, Addison-Wesley Publishing Company,
New York, 1990.
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pulses, unless the modeled pulse oscillated around a minimum or maximum value. In that case,
the average over that span defined the low or high state amplitude, respectively. For example,
in Figure 2 (b) the low state was defined to be the average of the oscillations on either side of
the peak. As the maximum amplitude of the modeled peak did not oscillate, the high state
value was defined to be the maximum amplitude of the peak.

The relative timing between the ideal pulse and modeled waveform was arranged so that the
intersection between the low state and rising edge on each pulse coincided. The lowest-
amplitude red circle marks this point. This alignment of the two waveforms was intended to
facilitate the task of comparing the width of the modeled pulse's rising edge and the width of
the ideal pulse. As discussed in Section 1.3, comparing these two parameters is the basis of one
method used to characterize pulse shape. The distance separating the two red circles on the
modeled waveform is equal to either the width of the modeled pulse's rising edge or the width
of the ideal pulse, whichever is shorter. If the second red circle intersects the high state of the
ideal pulse, the width of the rising edge of the modeled pulse is equal to or shorter than the
ideal pulse width.

Including higher-frequency terms narrows the width of the modeled pulse and increases the
steepness of its rising and falling edges. The slope on the rising edge of the modeled pulse
shown in Figure 2 (a) is so shallow that the pulse does not reach the high state amplitude within
the ideal pulse duration. Including terms with indices one and two in the model, as was done
when calculating the modeled pulse shown in Figure 2 (b), results in a narrower pulse. Although
the transition time between the low and high state amplitudes is still longer than ideal pulse
width, the difference is small.

When terms with indices through the third are included in the model, as is the case in
Figure 2 (c), the width of the rising edge of the modeled pulse is less than the width of the ideal
pulse. The amplitude of the modeled pulse's low-state oscillations have also decreased.

As shown in Figure 2 (d), one of the most notable effects of including terms with indices
through the sixth in the modeled pulse is a narrowing of the pulse width. This, combined with
the reduced amplitude of the low-state oscillations, results in improved peak definition when
compared with models that include fewer harmonic frequency terms.

Adding terms with the next index, for a total of seven, to the model has a significant impact on
the appearance of the modeled pulse, shown in Figure 2 (e). The peak of the pulse is flatter,
and the width of the rising edge of the pulse is shorter.

When terms with indices through the ninth are included in the modeled pulse, its width is a
better match to the width of the ideal pulse. This is shown in Figure 2 (f). The amplitude of the
low-state oscillation is smaller, and the width of the rising edge of the pulse is less than half the
duration of the ideal pulse.
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(a) The model included the term with index
one. The modeled waveform is sinusoidal.
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(c) The model included terms with indices one
through three, and the pulse is further defined.
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(e) The model included terms with indices one

through seven. Maximum amplitude is reached

in less than half an ideal pulse duration.
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(b) The model included terms with indices one
and two, and the pulse width is narrowed.
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(d) The model included terms with indices one
through six. The term with index five is zero.

Sum of Terms with n <9, 20% Duty Cycle

)
I
[
E
L

Amplitude (a.u.

L} L} L} L} L} L}
025 050 075 1.00 125 150 175 2.00
Period (time)

(f) The model included terms with indices one
through nine and its width is closest to the
width of the ideal pulse.

Figure 2 The six blue curves plotted above are different models of an ideal, 20% duty cycle rectangular
pulse train. A time duration equal to 1.5 periods of the waveforms is shown for each. The dashed black
outlines show the ideal pulse profile. The modeled pulse becomes better defined and more narrow with
steeper sides as more terms of the Fourier series representation in Eq. 1 are included in the model.
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Figure 2 illustrates that the duty cycles of the ideal and modeled waveforms may be different.
An ideal rectangular pulse train may have a duty cycle between 0 and 100%. When its duty
cycle is not 50%, the duty cycle of the modeled waveform will become closer to 50% as fewer
higher-index terms are included in the calculation. A signal that retains only the first term in the
expansion, as is the case in Figure 2 (a), has a 50% duty cycle, since a sinusoid's pulse width
always equals half of its period.

1.1.1 Square Waves

Constraining the duty cycle to 50% simplifies the Fourier series representation of Eq. 1
considerably. The result,
(t) 1+2 i: 1'(2 t) 3
x(t) ==+— —sin(2mn
2 T n fO , ( )
n=13,5..
states that a square wave can be represented exclusively by a DC term and an infinite series of

sine functions. In addition, only the harmonic terms with odd indices have non-zero amplitudes.
The first five non-zero sinusoidal terms are plotted individually in Figure 3.

Lowest-Index Harmonic Sinusiods
Included in Square Wave Expansion

Amplitude (a.u.)

0.00 ' 0.:|3 . 0.'25 . 0.;58 ' 0.;50 0.;53 ' 0.l75 . 0.;38 . 1.00
Fundamental Period (waves)
Figure 3 The first five non-zero harmonic series terms in the Fourier series expansion of a square

wave include the fundamental term (n = 1), whose frequency matches the signal's repetition
rate. The frequencies of the higher-index terms are integer multiples (>1) of the fundamental.

Approximations of the square wave were calculated by summing limited numbers of the terms
given by Eq. 3. Waveforms resulting when terms with indices up to nine were included in the
calculations are plotted in Figure 4. The blue curves are the modeled waveforms, and the
dashed-black outlines are the ideal pulse profiles. As in Figure 2, the high and low state
amplitudes equaled the minimum and maximum amplitudes of the modeled pulses, unless the
modeled pulse oscillated around a minimum or maximum value. In that case, the average over
that span defined the low or high state amplitude, respectively. The red circle with the lowest
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amplitude marks the boundary point between the low state and rising edge on both pulses, and
the red circle with the highest amplitude marks the point at which the rising edge of the
modeled pulse intersects the high state of the ideal pulse.

Term with n =1, 50% Duty Cycle
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(a) The model included the term with index one, whose transition time equals the ideal pulse width.
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(b) The model included terms with indicies one and
three, and the pulse profile is recognizable.
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(d) The model included terms with indices through

the seventh, resulting in a more angular profile.
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(c) The model included terms with indices through the

fifth, and the rising edge had a steeper slope.
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(e) The model included terms with indices through
the ninth and had a recognizably rectangular profile.

Figure 4 Different models of an ideal square wave are plotted over 1.5 periods, and the dashed black
outlines show the ideal pulse profile. As the signal and the term with index one have a 50% duty cycle, the
modeled pulse is a better match to the ideal for every case, as compared with the modeled 20% duty cycle

waveforms.

Since both sine waves and square waves have 50% duty cycles, the first term of the Fourier
series expansion, plotted in Figure 4 (a), has the same duty cycle as the ideal square wave. A
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consequence is that the transition time of this modeled pulse equals the ideal pulse width. This
is in contrast to the modeled pulse shown in Figure 2 (a), in which a 20% duty pulse was
modeled while limiting the index of the expansion to one. In that case, the width of the rising
edge of the sine wave exceeded the width of the ideal pulse.

The modeled 20% and 50% duty cycle pulses can be compared when the models include
expansion terms up to the same index. Under this constraint, the ratios of modeled to ideal
pulse widths are always closer to unity for the modeled 50% duty cycle pulses. However, in
both cases, models including only expansion terms with a maximum index of three resulted in
recognizable pulses. In addition, when terms with indices up to and including the ninth are
included, the modeled pulses in both cases have widths reasonably similar to the ideal case and
profiles that are recognizably rectangular.

1.2 Device Frequency Response and 3 dB Bandwidth

One conclusion that can be drawn from Section 1.1 is that removing frequency components
from a waveform results in distortion. However, some amount of distortion in an output signal
may be unavoidable. Information about the frequency response of the system or device is
helpful in evaluating whether its output signal will be suitable for an application.

Data characterizing the frequency response of a system over a range of frequencies may be
supplied. These data may characterize both phase and magnitude responses, or only the
magnitude response. When the system is designed to provide an output signal that is a scaled
version of an input signal, the uniformity of the response and the maximum supported input
signal bandwidth are of interest.

The phase response specifies the relative phase shift the system adds to each frequency
component of the input signal. It is typically desirable for the phase response to be flat over the
frequency range of interest. If the phase response varies over the input signal's bandwidth, the
phase relationship between different frequency components in the input signal will not be
preserved in the output signal, and the output signal will be distorted. The phase response was
not considered in this work.

The magnitude of the frequency response specifies the relative scaling factors the system
applies to the amplitudes of the input signal's frequency components. If the magnitude of the
frequency response is not provided, it can be found by measuring the peak-to-peak output
signal amplitude while incrementing the frequency of an input sine wave. The function
generator, or other input signal source, should provide sinusoids with the same peak-to-peak
amplitude over the entire frequency range of interest. At each input signal frequency, this
frequency and the measured peak-to-peak amplitude of the output signal should be recorded
as a pair. The measured output signal amplitudes are typically normalized with respect to the
value measured at a reference frequency. Often the reference amplitude value is the maximum
value, and the resulting scaling factors are between zero and one. A plot of the frequency
response for a low pass filter is shown in Figure 5.

The 3 dB bandwidth specifies the range of input signal frequencies corresponding to normalized
amplitude scaling factors greater than 0.707, assuming the value at the reference frequency is
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one. Multiplying the amplitude of an electrical signal by 0.707 reduces its power by half.2 When
the frequency response of a device or system is highest at low frequencies, as is the case in this
work, the 3 dB bandwidth corresponds to the lowest frequency at which the magnitude
response drops to a value 70.7% of its reference value. Beyond the 3 dB bandwidth, scaling
factors are lower and the attenuation is greater.

Frequency Response Magnitude

1.0 : L 1.00
0.9 : -0.81
5 081 ‘ [064
S T 3dBBandwidth 0% o
o 0.6 F0.36 S
S 05 F0.25 D
£ 04] F0.16 o
2 0.3 £0.09 =
g 0.2 £0.04

0.1 [ 0.01

0.0 [0.00

10 100 400

Frequency (kHz)

Figure 5 The frequency response magnitude of a low-pass filter has high scaling factors at lower
frequencies and low scaling factors at higher frequencies. The 3 dB bandwidth is indicated.

The 3 dB bandwidth parameter is useful for quickly determining whether the device or system
has the necessary bandwidth to provide a high-fidelity output signal for a given input signal. If
frequency components in the input signal are greater than the 3 dB bandwidth, they may be
significantly attenuated, which could result in unacceptable distortion of the output signal.

1.3 Quality Factor for Characterizing Rectangular Pulses

Modeling periodic signals using a Fourier series representation is a powerful and informative
approach to analyzing signal distortion, but faster and less computationally intensive
approaches are also of interest. The method presented in this section computes a quality factor
that rates the similarity of a pulse's shape to two ideal cases: a perfect rectangular pulse and a
pure sin(x) function from x = —m /2 to 31 /2. This approach was developed to describe the

shape of output signal pulses when:

e The input signal is a periodic waveform with nominally rectangular pulses.

e The duty cycle of the input signal is <50%.

e Lower frequency components have been minimally attenuated in the output signal.
e Higher frequency components may have been attenuated in the output signal.

2 When the signal is a voltage or current, the signal power is directly proportional to the square of the signal
amplitude. A drop to a normalized amplitude of 0.707 corresponds to a drop in power by a factor of (0.707)? = 0.5.
Signal power is often specified on a logarithmic scale in terms of decibels (dB). Using this scale, the 0.707
normalized drop in amplitude corresponds to 10log[(0.707)] = -3 dB. In the phrase "3 dB bandwidth" the negative
sign is typically omitted, as it is understood.
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1.3.1 Characteristics of Ideal Rectangular Pulse Trains and Sinusoids

An ideal rectangular pulse train can be modeled, as discussed in Section 1.1, by computing and
summing the infinite number of Fourier series expansion terms. Figure 6 shows a full period of
a rectangular pulse train with a 50% duty cycle, which is also known as a square wave. The
second curve, a sine wave, included in this figure results when the maximum index of the
expansion is limited to one. The rectangular pulse train and the sine wave represent extreme
cases at either end of a continuum of possible output waveforms. The time to transition
between minimum and maximum amplitudes is a notable difference between the two.

Pulses in rectangular pulse trains are characterized by infinitely short transition times between
low and high state amplitudes. The dwell time at the high state amplitude equals the pulse
width, which may be any fraction of the period.

For a sinusoid to transition between minimum and maximum amplitudes, its argument must
change by 180°, or &, which is equal to half of the period. The full-width-half-maximum pulse
width also equals half of a period, and the dwell times of the pulse at the minimum and
maximum amplitudes are infinitely short.

Square vs. Sinusoidal Pulse Shapes

Period (t)
-0.25T 0 0.25T 0.5T 0.75T
Max v —
— ' Es
=] v
s‘, : Ill
o L
'g v
= /1 Pulse Width
4 s
£ S
< 'll :
' 1
Min p==——
T T T
—m/2 0 /2 b 3m/2
O (radians)

Figure 6 The dashed edges of the square waveform (green) and sine wave (blue) show their rising
edges. Both have the same pulse width. The transition time for the square wave is infinitely short, but
the sine wave requires half a period to complete the transition.

The time required for a pulse to transition between low and high amplitudes can be used as a
basis for describing pulse distortion, as is described in the next section.

1.3.2 Derivation of Quality Factor

The quality factor approach was developed as a tool to assess, describe, and predict the shape
of nominally rectangular output pulses, given the duty cycle and the repetition rate of the input
pulse train. This approach assigns a numerical value to a pulse shape based on the steepness of
its rising edge and the width of the ideal pulse it approximates.
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The maximum value of the quality factor is one, and it is assigned to pulses identical to the ideal
rectangular pulse, with the same pulse width and infinitely short transition times between low
and high signal states. A quality factor of zero is assigned to pulses that require exactly the
width of the ideal rectangular pulse to transition between low and high amplitude states. The
modeled pulse plotted in Figure 4 (a) has a quality factor of zero. Negative quality factors are
assigned to pulses whose rising edges are wider than the ideal pulse width. An example of a
modeled pulse with a negative quality factor is plotted in Figure 2 (a).

The expression for the quality factor was derived from the transition times and pulse widths
(W) of ideal rectangular and sinusoidal pulse shapes. The full transition times of real pulses can
be challenging to measure, since the boundaries separating the low signal state, the rising edge
of the pulse, and the high signal state can be difficult to identify. In recognition of this, the
derivation follows the common practice of using rise time, defined here as the time separating
positions 10% and 90% up the rising edge of the pulse, instead of the full transition time.

The sinusoidal pulse shape used in the derivation is shown in Figure 7. The amplitude is
expressed as a function of radians, rather than of time or distance. Minima occur at -nt/2 and
31/2, and the maximum occurs at /2. The radial pulse width (Wp) is m.

Sinusoidal Pulse Parameters

110% - 90%
] Rising Edge

P— Y0 IR 6 A O

0.2
0.4
-0.64
0.8
1.0 _' ‘L'O/2
—nl2 2 = 3n/2
O (Radians)

Figure 7 Radial rise time and pulse width are shown defined with respect to a sine function.

As the amplitude varies over £1, the low state is -1 and the high state is +1. Radial rise time (7y)
corresponds to the radial distance separating the points at 10% and 90% of the full amplitude.
These points correspond to amplitudes -0.8 and 0.8, whose radial separation,

79 = 2sin”1(0.8) = 1.85rad (4)
equals the radial rise time. The ratio of radial pulse width to radial rise time,

Wg s

=——= 17
Tg 1.85rad

) (5)
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is then used with the rectangular pulse parameters to define the quality factor (I'),

Wy T T,
[=1-——=%=1-17—

6 ‘r
— o (6)

in which:
I' = 1 for an ideal rectangular pulse shape.

[' = 0 when the pulse shape is sinusoidal.

1.3.3 Dependence of Quality Factor on Duty Cycle

The maximum quality factor is always one, but the lowest possible quality factor depends on
the difference between the ideal duty cycle of the input waveform and the 50% duty cycle of
the sinusoid resulting when the index of the expansion is limited to one.

Quality factors of zero (I' = 0) can occur only if the input waveform's duty cycle is <50%. When
the input duty cycle equals 50%, zero is the lowest possible quality factor. Zero quality factors
result when the time required by the output pulse to transition between low and high state
amplitudes equals exactly the full width of the ideal rectangular pulse. Figure 4 (a) shows a
pulse with a zero quality factor. The models of the 20% duty cycle case in Figure 2 indicate that
a pulse with a zero quality factor would have a rising edge between that in Figure 2 (b) and (c).

Negative quality factors, which can occur only if the input duty cycle is <50%, are assigned to
output pulses that cannot achieve the high state amplitude within the ideal pulse duration.
Under these conditions, only a few of the lowest-index terms are included in the calculations of
the modeled pulse or retained in the output signal. According to Eq. 1 and Eq. 2, the amplitudes
of these lowest-index terms can be substantially smaller in magnitude than the amplitude of
the ideal pulse. Measuring the rise times of these reduced-amplitude, distorted output pulses
can be problematic. Their low amplitudes may also adversely affect some applications, such as
those that rely on detection of specific pulse amplitudes to trigger an event. The pulse in

Figure 2 (a) has a negative quality factor.

Quality factor analysis is not recommended when the input duty cycle is >50%, as the quality
factor will never be zero, and this makes interpretation of the quality factor difficult. However,
if the width of the shortest state is the limiting factor for the application, it may be useful to
calculate the quality factor using the width of the low-amplitude state, which is less than half a
period. This would essentially describe the signal as one with a duty cycle <50%.

2 Experimental Setup

The experimental setup is shown in Figure 8, with key components identified. The modulated
voltage signal from an 80 MHz function generator was coupled to the external modulation
input of the CLD1010LP, which provides current and temperature control for the mounted
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fiber-pigtailed laser diode. The RF input of the CLD1010LP was not used, as this input was
designed for high-speed sinusoidal input signals only. The modulated current output by the
controller was used to drive a 980 nm, fiber-pigtailed laser diode, whose optical output was
sent through an attenuator and then detected by a 1 GHz DETO2AFC FC/PC-coupled
photodetector. The signal from the photodetector was input to a 1 GHz oscilloscope.

Figure 8 Experimental Setup used to Modulate a Laser Diode and Measure the Optical Output Signal

1. CLD1010LP Combined Mount and Current and
Temperature Controller for Fiber-Pigtailed Laser Diodes
2. Former Generation LP980-SA80 Laser Diode
(Installed in the CLD1010LP and not Visible)

VOA980-FC Variable Optical Attenuator
DET02AFC 1 GHz FC/PC-Coupled Photodetector
1 GHz Oscilloscope

80 MHz Function Generator

o v AW

The CLD1010LP was operated in constant current mode and supplied a total current of

140 mA £ 50 mA to the laser diode. The controller also maintained the laser diode at 25 °C. The
total driving current was chosen so that it would always exceed the laser diode's 20 mA
threshold. The 140 mA constant current component was user-specified and provided by the
controller. The modulated current component of approximately £50 mA resulted from circuitry
internal to the controller converting the modulated £350 mV voltage signal from the function
generator to a modulated current signal, with a specified modulation coefficient of 150 mA / V.

The £350 mV voltage signal amplitude represented only 5% of the controller's maximum
modulation voltage range of £7 V in constant current mode and was chosen so that the
controller would operate under small-signal conditions.

The optical signal from the laser diode was attenuated by a VOA980-FC Single-Mode Variable
Optical Attenuator and then coupled to the DETO2AFC photodetector. A 1 GHz oscilloscope
measured the voltage signals from both the function generator and the DETO2AFC. The input
impedances of the oscilloscope ports were set to 1 MQ for the function generator monitor and
50 Q for the detector measurement.
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3 Results

Modulated voltage signals from the function generator were input to a system that included
the combined laser diode controller and mount, the laser diode, the variable attenuator, and
the photodetector. Repetition rates and duty cycles of the input rectangular pulse trains were
varied, and the output pulses were detected.

The frequency content of the signals output by both the function generator and the system
were analyzed and compared. Amplitudes of the Fourier series coefficients were provided by
the oscilloscope, which computed fast Fourier transforms (FFTs) of the measured signals. This
was convenient, but the number of calculated coefficients was limited by the oscilloscope's
resolution and scan parameters.

Quality factors, discussed in Section 1.3, were also computed for the output pulses. The value
of the quality factor was computed using the ideal pulse width and the measured rise time of
the output pulse. Measurements of pulse parameters were made manually from the
oscilloscope traces.

3.1 Frequency Response of the Laser Diode Driver

The magnitude of the frequency response was measured as described in Section 1.2, and the
result is plotted in Figure 9. The function generator provided the set of input sine waves, with
frequencies spanning the range from 10 Hz to 1000 kHz. For each input, the peak-to-peak
amplitudes of the output voltage waveforms were measured. They were then normalized by
the peak-to-peak output signal amplitude measured when the 10 Hz sine wave was input.

From these data, the 3 dB bandwidth of the system was determined to be 750 kHz.

The CLD1010LP combined mount and current and temperature controller had a specified small-
signal bandwidth of 300 kHz and was expected to limit the system's bandwidth. However, the
measured 3 dB system bandwidth was over twice this value. The difference between the
measured and specified 3 dB bandwidths may due to a dependence of the bandwidth on the
peak-to-peak, small-signal amplitude. It is possible the amplitude of the input signals used in
this work was smaller than that used when developing specifications for the CLD1010LP.

Measuring the 3 dB bandwidth, as was done for this system, may be of interest to a user even
when this parameter is provided. The specified 3 dB bandwidth can be a conservatively low
value, and the specific operating conditions of an application may affect the absolute value of
the 3 dB bandwidth.
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Figure 9 Frequency response magnitude of the system, found by measuring the peak-to-peak voltages
of signals output by the system in response to input sinusoids provided by the function generator.
Amplitude values were normalized to the value measured at 10 Hz. The 3 dB system bandwidth extends
from DC to the lowest frequency for which the amplitude is 70.7% that of the reference value at 10 Hz.

3.2 Repetition Rate vs. 3 dB System Bandwidth

The dependence of the output signal's distortion on the relationship between the input signal's
repetition rate and the system's 3 dB bandwidth was investigated. To isolate the effects of
varying the repetition rate, the duty cycle of the input signal was held constant at 50%, which
resulted in a square wave input signal.

Repetition rates of the input square waves were chosen with respect to the 3 dB cutoff
frequency, 750 kHz, to limit the number of input signal frequency components within the 3 dB
system bandwidth. This intentionally caused distortion of the output signal. Power in each input
signal component with a frequency within the 3 dB bandwidth was attenuated by no more than
3 dB, with respect to the reference value measured at 10 Hz. Power in components with
frequencies above the 3 dB cutoff frequency was strongly attenuated.

The number of Fourier series expansion terms below the 3 dB cutoff frequency for a particular
repetition rate was found using Eq. 3 in Section 1.1. The fundamental frequency of the Fourier
series expansion is equal to the repetition rate. The frequency (nf,) of each sinusoidal
expansion term is a harmonic of the fundamental frequency.

The 9X bandwidth rule provides a general guideline for obtaining an output signal that is a
reasonable representation of the input square wave. According to the rule, the 3 dB cutoff
frequency of the system should be at least a factor of nine higher than the repetition rate of the
input square wave. The pulse plotted in Figure 4 (e) includes terms with frequencies up to nine
times the repetition rate.

The minimum repetition rate for this work was chosen, according to the 9X rule, to be exactly
one ninth of the 3 dB system bandwidth. In this case, the frequencies of the expansion terms
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with indices up to nine were within the 3 dB system bandwidth. The frequency of the expansion
term with index equal to nine was equal to the 3 dB cutoff frequency.

Each row in Table 1 lists the frequencies of an input signal's non-zero Fourier series expansion
terms. Frequencies in green cells are within the system's 3 dB bandwidth, and frequencies in
white cells are outside this range. The repetition rates of each signal were chosen so that a non-
zero term in its Fourier series expansion had a frequency equal to the 3 dB cutoff frequency.

Table 1 The repetition rates of the five input square waves and the frequencies of the non-
zero harmonic terms of the Fourier series expansion with n < 9 are listed. Those frequencies
within the 750 kHz system bandwidth are in green.

Fundamental . . . .
3'Y Harmonic | 5" Harmonic | 7t Harmonic | 9t Harmonic
(Rep. Rate)
n=3 n=5 n=7 n=9
n=1
Input Signal 1 83.3 kHz 250 kHz 417 kHz 583 kHz 750 kHz
Input Signal 2 107 kHz 321 kHz 535 kHz 750 kHz
Input Signal 3 150 kHz 450 kHz 750 kHz
Input Signal 4 250 kHz 750 kHz
Input Signal 5 750 kHz

Figure 10 shows one period of the waveform measured at the system's output for every input
signal. Since every additional term within the system's 3 dB bandwidth improves the output
signal's resemblance to a square wave, the output signal most closely resembling a square wave
resulted from the input signal with the lowest repetition rate. However, Figure 10 also shows
that even when the 3 dB cutoff frequency is only three times the repetition rate, the output
signal is distinct from a sine wave. The overshoot on the rising edges and undershoot on the
falling edges of the pulses were artifacts, likely from an impedance mismatch between
components in the system.

Figure 11 compares the frequency content of the input and output signals. Each grouping in the
bar graph shows the amplitudes of a specific Fourier series expansion term for all six signals.
Amplitudes for terms with indices through the ninth are included, and the amplitudes of all are
normalized with respect to the corresponding term with index one. The amplitudes of the
terms are expected to decrease with increasing index due to Eq. 3, which includes a factor of
1/n multiplying each term. The bars labeled "Function Generator" represent the coefficients of
the input signal and can be used as a reference amplitude for each index.

This bar graph shows that even frequency components below, but approaching, the 3 dB cutoff
frequency were attenuated by the system. In addition, some components with frequencies
above the cutoff frequency may have non-negligible amplitudes. Examples of this for the

250 kHz repetition rate signal (red) are the amplitudes of its 3" and 5™ index terms,
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respectively. However, the majority of frequency components above the 3 dB cutoff frequency
were strongly attenuated.

50% Duty Cycle Input Signal
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Figure 10 Measured output waveforms with lower repetition rates have flatter high and low states, as
well as steeper rising edges. The overshoots and undershoots when transitioning to high and low states,
respectively, were identified as artifacts and affect all but the 750 kHz case.
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Figure 11 The frequency content of the waveforms measured directly from the function generator and
at the output of the system are compared. Amplitudes were normalized with respect to the amplitude
of the Fourier expansion term with index one. The strong attenuation of terms with
frequencies > 750 kHz correlates with the distortion of the output waveforms.

Incrementing the repetition rate by progressing through the five input signals had the effect of
pushing one, then another frequency component to the system's 3 dB cutoff frequency. The
fewer the number of frequency terms within the 3 dB system bandwidth, the greater the
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negative impact on the output signal's distortion when the repetition rate was then
incremented. For example, compare the 150 kHz repetition rate output waveform, for which
three components were within the 3 dB bandwidth, and the 250 kHz repetition rate output
waveform, with two. The profile of the 150 kHz repetition rate waveform was similar to that
with the 83.3 kHz repetition rate waveform. But, the waveform with the 250 kHz repetition rate
had a profile significantly closer in appearance to that of a sinusoidal waveform.

The guideline that the 3 dB system bandwidth should be at least nine times greater than the
repetition rate is generally useful, but it may not meet the requirements of a specific
application. If a different ratio is needed, it may be helpful to use Fourier series analysis to
determine the number of non-zero, higher-index terms of the input waveform that should be
preserved in the output signal.

Computing the quality factor offers another approach for predicting signal quality for different
repetition rates, given a 3 dB system bandwidth. This approach is described in Section 1.3, and
computed quality factors for these waveforms are presented and discussed in Section 3.4.

3.3 Modulated Output vs. Input Signal Duty Cycle

The distortion of the output pulses depended on the duty cycle of the input signal, as well as on
its repetition rate. Input signals with 50% duty cycles were considered exclusively in Section 3.2.
In this section, output signal distortion was investigated for input rectangular pulse trains with
different duty cycles. The dependence of the output signal's duty cycle on the system's 3 dB
cutoff frequency, the repetition rate of the input signal, and the duty cycle of the input signal
was also investigated.

Input signals consisting of periodic rectangular pulse trains first with 20%, and then with 80%,
duty cycles were input to the system. Selected output signals are shown in Figure 12 and
Figure 13. For comparison, Figure 10 gives examples of output waveforms resulting from input
signals with 50% duty cycles.

These plots show that repetition rates providing acceptable output signal quality when the
input signal's duty cycle was 50% may not provide acceptable signal quality if the input signal's
duty cycle is changed. For example, when the input signal had an 83.3 kHz repetition rate, the
profiles of the output waveforms' high states varied from rounded to approximately flat as the
duty cycle of the input signal was varied from 20% to 80%.

This was due to the duty cycle affecting the ratio of rise time to high-state duration. Reducing
the duty cycle while holding the repetition rate constant resulted in a shorter-duration high
state. A consequence was that the output signal in the 20% duty cycle case had less time to
stabilize at the high state before transitioning to the low state. This resulted in output pulses for
the 20% duty cycle case that were significantly more rounded, for each repetition rate, than
those measured for the other duty cycle cases.
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Figure 12 Waveforms output for input rectangular pulse trains with 20% duty cycles and repetition
rates up to 200 kHz are plotted. When just the high state is considered, only the 10.0 kHz repetition
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Figure 13 Waveforms output for input rectangular pulse trains with 80% duty cycles and repetition
rates up to 300 kHz, essentially an inverse of the 20% duty cycle case, are plotted. When just the high
state is considered, both the 83.3 kHz and 10.0 kHz repetition rate output signals had recognizably

rectangular profiles.
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Acceptable combinations of the input signal's repetition rate, the input signal's duty cycle, and
the system's 3 dB bandwidth depend on the application. If the application requires only the
detection of a pulse, rather than the preservation of the rectangular profile of the pulse, a
higher repetition rate may be acceptable for a wide range of duty cycles. If the application
specifies minimum acceptable output signal quality over both the high and low state durations,
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the repetition rate may need to be reduced to meet the requirements for the shorter-duration
state.

Figure 14 plots the duty cycles of the signals output by the 750 kHz bandwidth system as
functions of the input signal's duty cycle and repetition rate. The dependence of the output
signal's duty cycle on the system's 3 dB bandwidth can be explained by considering the Fourier
series expansion of a periodic rectangular pulse train. The shorter-duration states were
narrowed and sharpened when more higher-frequency terms were included in the waveform.
Increasing the repetition rate caused more higher-index terms to be strongly attenuated, as
their frequencies exceed the system's 3 dB cutoff frequency. After enough higher order terms
were attenuated, the fundamental sinusoidal term began to dominate. As sinusoids have a 50%
duty cycle, the duty cycle of the output waveform converged to 50% as the repetition rate
approached the system's 3 dB cutoff frequency. For reference, see Figure 2.

Duty Cycles of Input and Output Signals
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Figure 14 The measured duty cycles of the output signals approached 50% as the repetition rates
increased due to the attenuation of the higher frequency terms, which are required to narrow and
sharpen the shorter-duration state.

3.4 Quality Factors

Quality factors, introduced in Section 1.3, are used to numerically rate whether an output pulse
shape is closer to being rectangular or sinusoidal. While Fourier series analysis can be applied to
any periodic signal, the quality factor approach is targeted to periodic rectangular pulse trains.
Quality factors are functions of the repetition rate and duty cycles of the input signal, as well as
the bandwidth of the system.

An ideal rectangular pulse train is assumed to be the desired output waveform. Pulses that
instantaneously transition between low and high state amplitudes, a key characteristic of ideal
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rectangular pulses, and have the width of an ideal rectangular pulse, have quality factors of
one. Pulses that require the full duration of an ideal rectangular pulse to transition between
low and high state amplitudes have quality factors of zero. If the input signal has a 50% duty
cycle, a zero quality factor indicates the output waveform is a pure sinusoid. If the duty cycle is
<50% and the quality factor is zero, the corresponding output waveform will not be sinusoidal.
It will instead exhibit periodically repeating features identifiable as pulses.

Quality factors were calculated for output pulses resulting from input signals with 50%, 20%,
and 80% duty cycles. The quality factors were plotted with respect to repetition rate in

Figure 15. The solid red circles are values corresponding to the waveforms plotted in Figure 10,
Figure 12, and Figure 13.

The blue curve corresponds to the 50% duty cycle case. As discussed in Section 3.2, the
minimum repetition rate of the square wave signal input, 83.3 kHz, was chosen so that the
system's 3 dB cutoff frequency, 750 kHz, would be nine times higher. This choice was guided by
the 9X bandwidth rule, which states that the output signal will be a reasonable representation
of the input square wave when the system's 3 dB cutoff frequency is at least nine times higher
than the repetition rate. The 0.87 quality factor calculated for the 83.3 kHz repetition rate is
close to the maximum quality factor of one, indicating that the pulse shapes of this output
signal and the ideal square wave compare well. This result supports the use of the 9X rule.

It was also noted in Section 3.2 that a threefold difference, corresponding to a 250 kHz
repetition rate, resulted in an output waveform identifiable as a square wave. This could have
been predicted by referencing its 0.58 quality factor from Figure 15.

Quality factors for the 20% duty cycle case were consistent with the observation, made in
Section 3.3, that reducing the duty cycle while maintaining the repetition rate increases pulse
distortion. The 0.68 quality factor value for the 83.3 kHz repetition rate corresponds to an
identifiably square, but more distorted, pulse shape than in the 50% duty cycle, 83.3 kHz
repetition rate case. Referencing Figure 15, a repetition rate around 33 kHz would have been
required to obtain an output pulse with the 0.87 quality factor of the 50% duty cycle, 83.3 kHz
repetition rate case. The quality factor was zero for a repetition rate near 250 kHz. Quality
factors corresponding to higher repetition rates were negative and are not include on this plot.

When the duty cycle of the input signal is >50%, it is challenging to interpret the quality factors.
As the minimum quality factor varies with duty cycle and is positive, it is difficult to compare
these values with those found for other duty cycle cases. In addition, the quality factor rates
the shape of the pulse, but does not assess the worse distortion of the low-state segments. To
address these concerns, the quality factor can be computed using the width of the low-state,
rather than high-state, of the ideal rectangular pulse train. The data for the 80% case were
calculated both ways. The data for the 80% High curve were calculated using the width of the
high state of the rectangular pulse, and the data for the 80% Low curve were calculated using
the width of the low state. The 80% Low data resembled the 20% duty cycle data, as expected.
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Figure 15 Periodic rectangular pulse trains were input to a system with a 3 dB cutoff of 750 kHz, and
the quality factors of the output waveforms were computed. The two curves for the 80% case
correspond to quality factors computed using the ideal high state and low state widths. The red circles
correspond to data points for the waveforms plotted in Figure 10, Figure 12, and Figure 13. The lines
connecting the data points are guides for the eye.

The data plotted in Figure 15 show the influence of the system's 3 dB bandwidth as well as the

input signal's pulse width, repetition rate, and duty cycle on the quality factor. The relationship
among these parameters follows from the inverse relationship between the width of the pulses
and the bandwidth required to transmit them with reasonable fidelity.

Pulse widths decrease as the repetition rate increases, resulting in the negative slopes of the
guality factor curves. Pulse widths also decrease as the duty cycle decreases, so that decreasing
the duty cycle results in curves whose negative slopes are steeper.

Faster transition times between low and high states are required to limit the output pulse
distortion when pulse widths are shorter. One way to adjust the pulse width is to change the
repetition rate. Another way is to maintain the repetition rate, but to change the duty cycle.

4 Summary

The effect of repetition rate, duty cycle, and 3 dB system bandwidth on the distortion of the
output signal was investigated. Waveforms input to a laser diode controller were periodic,
rectangular pulse trains from a function generator with duty cycles between 20% and 80% and
repetition rates from 10 Hz to 750 kHz. The modulated optical output signals from the laser
diode were detected using a photodiode. An oscilloscope was used to record the output signals,
which were characterized by calculating the Fourier series coefficients and computing quality
factors from the ideal pulse widths and measured rise times of the output pulses.
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Fourier series analysis, which can be applied to any periodic signal, was used to model the
output waveforms and analyze the frequency content of measured waveforms. Analysis
showed that increasing the repetition rate, which is equal to the first harmonic frequency of the
Fourier series expansion, increases the frequencies of all terms in the expansion.

This effect was shown to affect the relationship between the duty cycles of the input and
output signals, when the duty cycle of the input signal is not 50%. In this case, increasing the
repetition rate of the input signal results in an output signal whose duty cycle is closer to 50%
than expected. The cause of this was shown to be the greater attenuation of a larger number of
higher-index terms with each increase in repetition rate, since this increased the frequencies of
all input signal components relative to the system's 3 dB cutoff frequency.

A quality factor, targeted to nominally rectangular pulse shapes, was derived to be used as a
pulse shape assessment or prediction tool. It numerically rates pulse shape as being more
similar to either an ideal rectangular or sinusoidal profile. The quality factor scale has a
maximum value of one, corresponding to an ideal rectangular profile, and a minimum value
that depends on the duty cycle of the input waveform. Quality factor values vary with 3 dB
system bandwidth, input signal repetition rate, and input signal duty cycle. For input signals
with duty cycles £50%, a quality factor greater than approximately 0.5 indicates the output
pulse shape is more similar to a rectangular profile.

Both Fourier analysis and quality factor approaches were used to investigate and confirm the
9X bandwidth rule for square wave transmission, which recommends the 3 dB system
bandwidth be at least a factor of nine higher than the repetition rate of the input signal. Fourier
analysis showed that this ninefold difference would result in the frequencies of the five lowest-
index, non-zero harmonic terms being within the 3 dB system bandwidth. When this rule was
followed, the output signal was observed to be a reasonable representation of the input square
wave. The 0.87 quality factor found for this case also compared well with the ideal value of one,
on a scale of zero to one. The 9X rule was also found to be a useful guideline for 20% duty cycle
pulses; the quality factor for the 83.3 kHz repetition rate pulse was 0.68.

A threefold difference between the repetition rate and the 3 dB system bandwidth preserves
the three lowest-index terms of the Fourier series expansion in the output signal. The terms
with indices one and three had non-zero amplitudes when the input signal was a square wave,
and the output waveform had an identifiably square pulse shape. The 0.58 quality factor for
this case supports the use of a 0.5 quality factor value to define the threshold above which
pulse profiles are more similar to rectangular. When the duty cycle of the input rectangular
pulse train was 20%, a threefold difference was not sufficient to provide output pulses with
recognizably rectangular profiles. Achieving a recognizably rectangular profile would require
including additional higher-frequency terms in the signal, which would improve the definition of
its narrow features.
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