
Guide to LabVIEW and APT Page 1

User Guide to LabVIEW & APT

Guide to LabVIEW and APT Page 2

Contents
CHAPTER 1 INTRODUCTION TO LABVIEW AND APT ..6

LabVIEW ...6

APT ...6

APT within LabVIEW..6

CHAPTER 2 LABVIEW PROGRAMS ..7

Front Panel..7

Block Diagram ...8
Terminals ...8
Nodes...9
Wires..9
Structures ..10

Icon and Connector Pane...10

CHAPTER 3 THE LABVIEW ENVIRONMENT... 11

Controls Palette ..11

Functions Palette ..11

Context Help Window ...11

CHAPTER 4 BUILDING THE FRONT PANEL.. 12

Adding Objects to the Front Panel ...12

Configuring Front Panel Objects ..12

Showing and Hiding Optional Elements ...12

Changing Controls to Indicators and Indicators to Controls ..12

CHAPTER 5 BUILDING THE BLOCK DIAGRAM.. 13

The relationship between Front Panel Objects and Block Diagram Terminals13

Block Diagram Objects...13
Block Diagram Terminals ...13
Block Diagram Nodes...14

Using Wires to Link Block Diagram Objects ..14

CHAPTER 6 GETTING STARTED .. 15

Guide to LabVIEW and APT Page 3

Building a VI with APT..15
Adding Controls to the Front Panel ..16
Adding an ActiveX control to the front panel ...18
Wiring Objects on the Block Diagram ...20
Setting an ActiveX property ..23
Calling an ActiveX Method..25
Passing parameters to an ActiveX method ...27

Controlling Code Execution Speed and Flow...29
Controlling Speed..29
Controlling Flow..30

Error handling ..31
Overview...31
Handling ActiveX errors ..31
Handling APT error return codes ..31
Adding the APT Error Return Code to the Error Data Line..37
Running a VI with APT...41
Debugging a VI ..43

Running a VI with Highlighted Execution ...43
Stepping Through a VI ..44
Probe Tools ..45

Types of Probes ...45
Generic probe...45

Breakpoints ..46
APT Event Dialogue...48

CHAPTER 7 ­ EVENT DRIVEN PROGRAMMING.. 49

What are Events? ..49

Why Use Events?...49

Registering and Handling an APT ActiveX Event ...49

GLOSSARY .. 53

SHORT CUT QUICK REFERENCE .. 55

Guide to LabVIEW and APT Page 4

Figure 2-1 – Example Front Panel... 7
Figure 2-2 – Example of a Block Diagram... 8
Figure 2-3 – Front Panel and Block Diagram Example... 9
Figure 2-4 – Example For Structure .. 10
Figure 2-5 – VI Icon and Connector Pattern.. 10
Figure 5-1 – Icon & Data Type View.. 13
Figure 6-1 – Getting started Screen .. 15
Figure 6-2 – Controls Palette... 16
Figure 6-3 – Numeric Controls Palette .. 16
Figure 6-4 – Buttons & Switches Palette... 17
Figure 6-5 – VI with Numeric and Stop Control... 17
Figure 6-6 – Controls Palette... 18
Figure 6-7 – ActiveX Object Selector Window .. 19
Figure 6-8 – ActiveX container with APT Motor Control.. 19
Figure 6-9 – Block Diagram Terminal Node .. 20
Figure 6-10 – Functions Palette .. 21
Figure 6-11 – Structures Palette.. 21
Figure 6-12 – While Loop around stop button ... 22
Figure 6-13 – Block Diagram Tools Palette with Automatic Tool Enabled.............................. 22
Figure 6-14 – ActiveX Palette.. 23
Figure 6-15 – Property Node Wired to ActiveX Control... 24
Figure 6-16 – Invoke Node Wired to ActiveX control .. 25
Figure 6-17 – Second Invoke Method wired to ActiveX control .. 26
Figure 6-18 – APT ActiveX method with Input\Output Parameters... 27
Figure 6-19 – ActiveX Method call with Inputs\Outputs and a Return Value 27
Figure 6-20 - ActiveX Method call which returns information from APT.................................. 28
Figure 6-21 – While loop with controlled execution speed.. 29
Figure 6-22 – Attempted parallel calls to APT software .. 30
Figure 6-23 – Serial calls to APT... 30
Figure 6-24 – Basic Error Handling ... 31
Figure 6-25 – Error handling using the APT return code .. 32
Figure 6-26 – Return code insertion VI front panel ... 33
Figure 6-27 – VI Connector Palette ... 34
Figure 6-28 – VI Icon Switched to Terminal View ... 34
Figure 6-29 – Return Code VI Stage 1 build ... 35
Figure 6-30 – Return Code VI Stage 2 Build... 36
Figure 6-31 – Return Code Insertion Vi Stage 3 Build .. 37
Figure 6-32 – Return Code Insertion VIs added to Example VI .. 37
Figure 6-33 – First Return Code Insertion VI Wired Up .. 38
Figure 6-34 – Second Return Code Insertion VI Wired Up ... 39
Figure 6-35 – Third Return Code Insertion VI Wired Up ... 39
Figure 6-36 – Example VI with basic error handling.. 40
Figure 6-37 – Example VI with serial number entered .. 41
Figure 6-38 – Example VI with live data.. 42
Figure 6-39 – Execution Controls on the menu tool bar.. 43
Figure 6-40 – Probe Tool Icon... 45
Figure 6-41 – Generic Probe Tool In Use ... 46
Figure 6-42 – Breakpoint Tool Icon ... 46
Figure 6-43 – Finding Breakpoints .. 47
Figure 6-44 – Example Event Dialogue Window... 48
Figure 7-1 – Example VI with Event Callback ... 50
Figure 7-2 – MoveComplete Event Callback VI Block Diagram.. 51
Figure 7-3 - MoveComplete Event Callback VI Block Diagram... 52

Guide to LabVIEW and APT Page 5

Guide to LabVIEW and APT Page 6

Chapter 1 Introduction to LabVIEW and APT

LabVIEW

LabVIEW is a graphical programming language that uses icons instead of lines of text to
create applications. In contrast to text-based programming languages, where instructions
determine program execution, LabVIEW uses dataflow programming, where the flow of data
determines execution.

In LabVIEW, you build a user interface with a set of tools and objects.

The user interface is known as the front panel. You then add code using graphical
representations of functions to control the front panel objects.

The block diagram contains this code. In some ways, the block diagram resembles a
flowchart.

Refer to the National Instruments web site at www.ni.com for more general information about
LabVIEW.

APT

The apt™ Suite of controllers includes a range of compact drivers, high power bench top
controllers and 19" rack based units that, together control our range of precision stages and
actuators, support motion control from the 10’s of cm to the nm regime. The product offering
comprises stepper motor and DC motor controllers, closed loop and open loop piezo
controllers, strain gauge readers, and solenoid drivers, together with a sophisticated feedback
controller (NanoTrak™) that fully optimizes coupled optical powers in a wide range of
alignment scenarios. All of our controllers are supported by unified PC based user and
programming utilities (the apt™ software suite) that enables higher level custom applications
to be constructed extremely effectively and quickly. Thanks to the USB connectivity
implemented on all of our controller units, it is extremely easy to link multiple units together to
realize a multiaxis motion control solution for many positioning and alignment needs.

APT within LabVIEW

Programmers of LabVIEW through the use of ActiveX technology, used within the APT
platform, can communicate and control any APT controller. By simply specifying which
controller to be used within code function calls, properties and events can be used to expose
a controllers functionality.

Guide to LabVIEW and APT Page 7

Chapter 2 LabVIEW Programs

LabVIEW programs are called virtual instruments, or VIs, because their appearance and
operation imitates physical instruments. Each VI uses functions that manipulate input from the
user interface or other sources and display that information or move it to other files or other
computers.

A VI contains the following three components:

• Front panel - Serves as the user interface.

• Block diagram - Contains the graphical source code that defines the functionality of
the VI.

• Icon and connector pane - Identifies the VI so that you can use the VI inside
another VI.

Note: A VI within another VI is called a subVI. A subVI corresponds to a subroutine in text-
based programming languages.

Front Panel

The front panel is the user interface of the VI. Figure 2-1 shows an example of a front panel.

Figure 2-1 – Example Front Panel

Guide to LabVIEW and APT Page 8

You build the front panel with controls and indicators, which forms the user interface. Controls
are knobs, push buttons, dials, and other input devices. Indicators are numerical readouts,
LEDs, and other displays. Controls simulate the physical interface of an instrument and
supply data to the block diagram of the VI. Indicators simulate instrument displays and are
used to display data from the block diagram.

Block Diagram

After you build the front panel, you add code using graphical representations of functions to
control the front panel objects. The block diagram contains this graphical source code. Front
panel objects appear as terminals on the block diagram.

The VI in Figure 2-2 shows several block diagram objects - terminals, functions, and wires.

Figure 2-2 – Example of a Block Diagram

Terminals

The terminals represent the data of a control or indicator. You can configure front panel
controls or indicators to appear as icons or data type terminals within the block diagram. By
default, front panel objects appear as icon terminals. For example, the terminal shown top left
(x), represents a numerical input control on the front panel. The DBL at the bottom of the
terminal represents a data type of double-precision, floating-point numeric.

Terminals are entry and exit ports that exchange information between the front panel and
block diagram. Data you enter into the front panel controls (e.g. x and y in Figure 2-2) enter
the block diagram through the control terminals.

In the example here the data then enters the Greater and Less functions. When the functions
complete their internal calculations, they produce new data values and in this case types. The
data flows to the indicator terminals, where they exit the block diagram, re-enter the front
panel, and appear on front panel indicators (x>y and x<y in Figure 2-3).

Guide to LabVIEW and APT Page 9

Figure 2-3 – Front Panel and Block Diagram Example

Nodes
Nodes are objects in the block diagram that have inputs and or outputs and perform
operations when a VI runs. They are analogous to statements, operators, functions, and
subroutines in text-based programming languages. The Greater and Lower functions in
Figure 2-2 are examples of such nodes.

Wires
You transfer data between block diagram objects through wires. In Figure 2-2, wires connect
the control and indicator terminals to the Greater and Less functions. Each wire has a single
data source, but you can split a wire to supply many VIs and functions that read the data.
Wires are different colours, styles, and thicknesses, depending on their data types. A broken
wire appears as a dashed black line with a red X in the middle. Broken wires prevent a VI
from running and must be removed.

Guide to LabVIEW and APT Page 10

Structures
Structures are graphical representations and are analogous to loops and case statements of
text-based programming languages. Use structures in the block diagram to repeat blocks of
code and to execute code conditionally or in a specific order.

Figure 2-4 – Example For Structure

Icon and Connector Pane

Figure 2-5 – VI Icon and Connector Pattern

After you build a VI front panel and block diagram, you can build the icon and the connector
pane so you can use the VI as a subVI. Every VI displays an icon, such as the one shown in
Figure 2-5,, in the upper right corner of the front panel and block diagram windows.

An icon is a graphical representation of a VI. If you use a VI as a subVI, the icon identifies the
subVI on the block diagram of the VI. You can double-click the icon in the upper right corner
of a VI to customize or edit it.

You may also need to build a connector pane, also shown in Figure 2-5, to use the VI as a
subVI. The connector pane is a set of terminals that correspond to the controls and indicators
of that VI, similar to the parameter list of a function call in text-based programming languages.

The connector pane defines the inputs and outputs you can wire to the VI so you can use it as
a subVI. A connector pane receives data at its input terminals and passes the data to the
block diagram code through the front panel controls and receives the results at its output
terminals from the front panel indicators.

When you view the connector pane for the first time, you see a connector pattern. You can
select a different pattern if you want to. The connector pane generally has one terminal for
each control or indicator on the front panel. You can assign up to a maximum of 28 terminals
to a connector pane. If you anticipate changes to the VI that would require a new input or
output, leave extra terminals unassigned.

To view the connector right click the icon and select Show Connector. In a similar way to
show the Icon whilst displaying the connector view right click the connector and select Show
icon.

Guide to LabVIEW and APT Page 11

Chapter 3 The LabVIEW environment

Controls Palette

The Controls palette is available only on the front panel. The Controls palette contains the
objects you use to create the front panel. The controls palette is organised into sub palettes
based on their type.

The controls and indicators located on the Controls palette depend on the palette view
currently selected.

Select Window / Show Controls Palette or right-click the front panel workspace to display
the Controls palette. You can place the Controls palette anywhere on the screen. LabVIEW
retains the Controls palette position and size so when you restart LabVIEW, the palette
appears in the same position and has the same size.

Functions Palette

The Functions palette is available only on the block diagram. The Functions palette
contains the VIs and functions you use to build the block diagram. The VIs and functions are
located on sub palettes based on their type.
The VIs and functions located on the Functions palette depend on the palette view currently
selected. Select Window / Show Functions Palette or right-click the block diagram
workspace to display the Functions palette. You can place the Functions palette anywhere
on the screen. LabVIEW retains the Functions palette position and size so when you restart
LabVIEW, the palette appears in the same position and has the same size.

Context Help Window
The Context Help window displays basic information about LabVIEW objects when you move
the cursor over each object. Objects with context help information include VIs, functions,
constants, structures, palettes, properties, methods, events, and dialog box components. You
also can use the Context Help window to determine exactly where to connect wires to a VI or
function.

Select Help /Show Context Help to display the Context Help window.

You can place the Context Help window anywhere on the screen. The Context Help window
resizes to accommodate each object description.
You also can resize the Context Help window to set its maximum size. LabVIEW retains the
Context Help window position and size so when you restart LabVIEW, the window appears in
the same position and has the same maximum size.
You can lock the current contents of the Context Help window so the contents of the window
do not change when you move the cursor over
different objects. Select Help / Lock Context Help to lock or unlock the current contents of
the Context Help window.

If a corresponding LabVIEW Help topic exists for an object the Context Help window
displays, a blue Click here for more help link to extra information.

Guide to LabVIEW and APT Page 12

Chapter 4 Building the Front Panel

The front panel is the user interface of a VI. Generally, you design the front panel first, then
design the block diagram to perform tasks on the inputs and outputs you create on the front
panel.

Adding Objects to the Front Panel

You build the front panel with controls and indicators, which are the interactive input and
output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other
input devices. Indicators are graphs, LEDs, and other displays.

Select Window / Show Controls Palette to display the Controls palette, then select controls
and indicators from the Controls palette and place them on the front panel.

Configuring Front Panel Objects

Use property dialog boxes or shortcut menus to configure how controls and indicators appear
or behave on the front panel. Use property dialog boxes when you want to configure a front
panel control or indicator through a dialog box that includes context help or when you want to
set several properties at once for an object. Use shortcut menus to quickly configure common
control and indicator properties. Options in the property dialog boxes and shortcut menus
differ depending on the front panel object. Any option you set using a shortcut menu overrides
the option you set with a property dialog box.

Right-click a control or indicator on the front panel and select Properties from the shortcut
menu to access the property dialog box for that object.

Note: You cannot access property dialog boxes for a control or indicator while a VI runs.

Showing and Hiding Optional Elements
Front panel controls and indicators have optional elements you can show or hide. Set the
visible elements for the control or indicator on the Appearance tab of the property dialog box
for the front panel object. You also can set the visible elements by right-clicking an object and
selecting Visible Items from the shortcut menu. Most objects have a label and a caption that
can be shown or hidden.

Changing Controls to Indicators and Indicators to Controls
LabVIEW initially configures objects in the Controls palette as controls or indicators based on
their typical use. For example, if you select a toggle switch it appears on the front panel as a
control because a toggle switch is usually an input device. If you select an LED, it appears on
the front panel as an indicator because an LED is usually an output device.

Some palettes contain a control and an indicator for the same type or class of object. For
example, the Numeric palette contains a digital control and a digital indicator.

You can change a control to an indicator by right-clicking the object and selecting Change to
Indicator from the shortcut menu, and you can change an indicator to a control by right-
clicking selecting Change to Control.

Guide to LabVIEW and APT Page 13

Chapter 5 Building the Block Diagram

After you build the front panel, you add code using graphical representations of functions to
control the front panel objects. The block diagram contains this graphical source code.

The relationship between Front Panel Objects and Block
Diagram Terminals
For each front panel object a corresponding block diagram terminal is created. Double-click a
block diagram terminal to highlight the corresponding control or indicator on the front panel.

Terminals are entry and exit ports that exchange information between the front panel and
block diagram. Data you enter into the front panel controls enter the block diagram through
the control terminals. During execution, the output data flows to the indicator terminals, where
they exit the block diagram, re-enter the front panel, and appear in front panel indicators.

Block Diagram Objects
Objects in the block diagram include terminals, nodes, and functions.
You build block diagrams by connecting the objects with wires.

Block Diagram Terminals

Figure 5-1 – Icon & Data Type View

You can configure front panel controls or indicators to appear as icons or data type terminals
on the block diagram. By default, front panel objects appear as icon terminals.

For example, a numeric icon terminal, shown in Figure 5-1, represents a numeric input on the
front panel. The DBL at the bottom of the terminal represents a data type of double-precision,
floating-point numeric.
The DBL terminal, also shown in Figure 5-1, represents the same control in the data type
view, where DBL represents the data type.

Right-click a terminal and select Display Icon from the shortcut menu to remove the
checkmark and to display the terminal in the data type view. Use icon terminals to display the
types of front panel objects on the block diagram, in addition to the data types of the front
panel objects. Use data type terminals to conserve space on the block diagram.

Note Icon terminals are larger than data type terminals, so you might unintentionally obscure
other block diagram objects when you convert a data type terminal to an icon terminal.

A terminal is any point to which you can attach a wire, other than to another wire. LabVIEW
has control and indicator terminals, constants, and other specialized terminals. You use wires
to connect terminals and pass data to other terminals.

Right-click a block diagram object and select Visible Item / Terminals from the shortcut
menu to view the terminals. Right-click the object and select Visible Item / Terminals again
to hide the terminals.

Guide to LabVIEW and APT Page 14

Note: This shortcut menu item is not available for expandable VIs and functions.

Block Diagram Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and perform
operations when a VI runs. They are analogous to statements, operators, functions, and
subroutines in text-based programming languages.

Using Wires to Link Block Diagram Objects
You transfer data among block diagram objects through wires. Each wire has a single data
source, but you can wire it to many VIs and functions that read the data. You must wire all
required block diagram terminals, otherwise the VI is broken and will not run.

Display the Context Help window to see which terminals a block diagram node requires. The
labels of required terminals appear bold in the Context Help window.

Wires are different colours, styles, and thicknesses depending on their data types. A broken
wire appears as a dashed black line with a red X in the middle. The arrows on either side of
the red X indicate the direction of the data flow, and the colour of the arrows indicate the data
type of the data flowing through the wire.

Wire stubs are the truncated wires that appear next to unwired terminals when you move the
wiring tool over a VI or function node. They indicate the data type of each terminal. A tool tip
also appears, listing the name of the terminal. After you wire a terminal, the wire stub for that
terminal does not appear when you move the Wiring tool over its node.

A wire segment is a single horizontal or vertical piece of wire. A bend in a wire is where two
segments join. The point at which two or more wire segments join is a junction. A wire branch
contains all the wire segments from junction to junction, terminal to junction, or terminal to
terminal if there are no junctions in between.

While you are wiring a terminal, bend the wire at a 90 degree angle once by moving the
cursor in either a vertical or horizontal direction. To bend a wire in multiple directions, click the
mouse button to set the wire and then move the cursor in the new direction. You can
repeatedly set the wire and move it in new directions.

To undo the last point where you set the wire, press the <Shift> key and click anywhere on
the block diagram.

When you cross wires, a small gap appears in the first wire you drew to indicate that the first
wire is under the second wire.

TIP: Crossing wires can clutter a block diagram and make the block diagram difficult
to debug. Avoid crossing wires as often as possible.

Guide to LabVIEW and APT Page 15

Chapter 6 Getting Started
Building a VI with APT
The Getting Started window, shown in Figure 6-1, appears when you launch LabVIEW. Use
this window to create new VIs, select among the most recently opened files, and to find
examples.

Figure 6-1 – Getting started Screen

In the Getting Started window, click the New / Blank VI link to create a new blank VI.
LabVIEW displays two windows: the front panel window and the block diagram window.

o The front panel, or user interface, appears with a gray background and is used to
display controls and indicators. The title bar indicates that this window is the front
panel for the blank VI.

o The block diagram appears with a white background and includes sub Vis and
graphical code structures that control the front panel objects. The title bar
indicates that this window is the block diagram for the blank VI.

Note: If the front panel is not visible, you can display the front panel by selecting Window /
Show Front Panel. Alternatively if the front panel is not visible, you can display the block
diagram by selecting Window / Show Block Diagram.

Guide to LabVIEW and APT Page 16

Adding Controls to the Front Panel

Controls on the front panel provide a way to input and output data through the use of controls and
indictors to the block diagram of the VI.

Complete the following steps to add a serial number entry and stop button control to the front panel.

Figure 6-2 – Controls Palette

1) If the Controls palette, shown in Figure 6-2, is not visible on the front panel, select

View / Controls Palette.

2) The Controls palette opens with the Express sub palette visible by default. If you do
not see the Express sub palette, click Express on the Controls palette to display the
Express sub palette.

3) Click the Numeric Controls icon to display the Numeric Controls palette.

Figure 6-3 – Numeric Controls Palette

4) Click the Numeric Control to attach it to the cursor, and then click in the Front Panel

to add the control.

Guide to LabVIEW and APT Page 17

5) Double click the default name given “Numeric” and change it to “Serial”. Adjust the

size of the control to allow sufficient space to input the 8 digit serial number of your
APT controller.

6) Click the Buttons & Switches Icon to display the Buttons & Switches palette.

Figure 6-4 – Buttons & Switches Palette

7) Click the STOP Button icon to select it, then click in the Front Panel to add the

control.

Figure 6-5 – VI with Numeric and Stop Control

Guide to LabVIEW and APT Page 18

It is a good idea at this stage to set a default value for the serial number to be used, as this
will always be the same if only one piece of equipment is being used.

8) Enter your 8 digit APT motor controller serial number into the numeric control. In this
example the serial number used is 83123456.

9) Right click the numeric control and select from the shortcut menu Data Operations /
Make Current Value Default. This stores the entered value as a default value.

10) Select File / Save As and save the VI as Example.vi in an easily accessible location.
This allows the VI and subsequent changes to be saved without danger of losing the
work carried out.

Adding an ActiveX control to the front panel

LabVIEW provides many standard controls and also has the ability to host third party controls
through mechanisms such as ActiveX.

APT software is exposed through ActiveX to allow users to incorporate hardware control
through their own custom applications.

Complete the following steps to add an APT Motor Control to the front panel.

1) Click the double chevron to expand the Controls palette, then select the .NET &
ActiveX palette. If the Controls palette is not visible, select
View/Controls Palette.

Figure 6-6 – Controls Palette

2) Select the ActiveX Container to attach it to the cursor, and then place the control

on the front panel. Notice at this stage the container is empty.

3) Right click on the centre of the ActiveX Container and select from the shortcut
menu Insert ActiveX Object…

Guide to LabVIEW and APT Page 19

Figure 6-7 – ActiveX Object Selector Window

4) From the list view of creatable objects select MGMotor Control, then click OK.

Note: In LabVIEW the MGMotor control represents the ActiveX control used to interface with
motor controller type hardware. Other APT hardware types have their own ActiveX controls.
Refer to the APT programming guide for further information on control names used with
specific types of hardware.

5) The ActiveX container should now contain the APT motor control. Resize and
position the control as required as shown in Figure 6-8.

Figure 6-8 – ActiveX container with APT Motor Control

6) Select File/Save to save the changes.

Guide to LabVIEW and APT Page 20

 Wiring Objects on the Block Diagram

To make use of the controls on the front panel, you must interconnect the objects with
graphical code within the block diagram. For each front panel object there is a corresponding
block diagram terminal. In this example there are three such terminals, as shown in
Figure 6-9.

Figure 6-9 – Block Diagram Terminal Node

Complete the following steps to wire the stop button to a while loop.

1) If the block diagram is not visible select from the front panel menu bar Window /
Show Block Diagram.

2) If the Functions palette, shown in Figure 6-10 is not visible on the front panel, select
View / Functions Palette, alternatively right click the block diagram workspace.

Guide to LabVIEW and APT Page 21

Figure 6-10 – Functions Palette

3) The Functions palette opens with the Express sub palette visible by default. Click
the double chevron to expand the list of palettes available then select
Programming/Structure to display the Structures palette shown in Figure 6-11.

Figure 6-11 – Structures Palette

4) Select the While Loop icon to attach it to the cursor. And then draw a rectangle
round the stop button as in the block diagram shown in Figure 6-12.

Guide to LabVIEW and APT Page 22

Figure 6-12 – While Loop around stop button

5) Click on the stop terminal output connector to start wiring, and then click on the while

loop stop button to terminate wiring. This joins the stop button action to the while
loop stop logic.
Note. Rearrange/resize the wiring diagram objects as necessary whilst creating this
example.

6) Select File/Save to save the changes.

Tip: Should you find that wiring cannot be started select View / Tools Palette and enable
automatic tools selection as shown in Figure 6-13.

Figure 6-13 – Block Diagram Tools Palette with Automatic Tool Enabled

Guide to LabVIEW and APT Page 23

Setting an ActiveX property
Properties of the APT control objects can be set through code in the block diagram.

Figure 6-14 – ActiveX Palette

Complete the following steps to set the serial number property of the APT motor control
object.

1) Select the Block Diagram window. If not visible, select Window/Show Block
Diagram.

2) Display the ActiveX palette as shown in Figure 6-14 by right clicking the block

diagram workspace to display the functions palette and then select Functions
Palette/Connectivity/ActiveX

3) Select the Property Node icon to attach it to the cursor. Then drop the node
onto the block diagram.

4) Wire the APT control object terminal in the block diagram to the input reference
connector of the property node by first clicking on the APT control output connection
to begin wiring. Click on the input ref connection of the property node to complete
the wiring.

5) In wiring the property node to the APT control object terminal the property node now
has information available as to what properties are available.

6) Right click the white area of the property node which by default displays the word
property. In the shortcut menu select properties. The available properties are
presented in a further shortcut drop down menu. Select the HWSerialNum property
from the list.

7) The property node now automatically displays the correct property node name and
connectors.

8) By default the property node parameter is set to read the current value. In this
instance we would like to set the serial number. Right click the white area of the
property node again and select Change All To Write from the shortcut menu that is
presented.

9) To set the property, data needs to be connected to the input of the property node.
Wire the input of the property node to the serial number control terminal by first
clicking the serial number terminal output connection to begin wiring. Click on the
property node HWSerialNum input connection to complete the wiring.

Guide to LabVIEW and APT Page 24

Notice that the wire between the serial number numeric and the property node has a dot on
the end closest to the property node. This is indicating that a data type conversion is taking
place as the numeric data type is a double floating point number and the APT serial number
property is a 32 bit integer. It is appropriate at this stage to change the data type
representation of the front panel serial number input control to an integer, to avoid this
unnecessary overhead.

10) Right click the Serial terminal in the block diagram. From the shortcut menu
displayed select Representation/I32. This changes the numeric control to be
represented by a 32 bit integer.

Notice that the dot on the wire input of the property node has now been removed as there is
no need for any data type conversion. Also, the Serial terminal changes colour from orange to
blue.

Figure 6-15 – Property Node Wired to ActiveX Control

11) Select File/Save, to save the changes.

Guide to LabVIEW and APT Page 25

Calling an ActiveX Method

Methods of the APT control object can be called within the block diagram by using an Invoke
Node. Details and information about specific APT methods can be found in the programming
help file of the APT software.
In this example we will call the StartCtrl (Start Control) method which starts communication
with connected APT hardware.

Complete the following steps to call the Start Control method of the APT control object.

1) Select the Block Diagram window. If not visible, select Window/Show Block
Diagram.

2) Display the ActiveX palette by right clicking the block diagram workspace to display

the functions palette and then navigate to Functions Palette/Connectivity/ActiveX.

3) Select the Invoke Node icon to attach it to the cursor. Then drop the node
onto the block diagram.

To ensure that the serial number is set prior to calling the start control method we wire the
output reference of the previous HWSerialNum property node to the input reference of the
StartCtrl invoke node. This reference is the same reference as the original APT control
object, however using the output side of the property node ensures that the serial number will
be set before calling the start control method.

4) Click the reference output of the property node to begin wiring. Click the reference

input of the invoke node to complete the wiring.

In wiring the invoke node to the APT control object reference the invoke node now has
information available as to what methods are available.

5) Right click the white area of the invoke node which by default displays the word

method. In the shortcut menu displayed select Methods. The available methods are
presented in a further shortcut menu. Select the StartCtrl method from the list.

The invoke node now automatically displays the correct method name.
This particular method requires no further parameters. However, there is a returning
parameter which for the time being we will leave this unwired.

Figure 6-16 – Invoke Node Wired to ActiveX control

Guide to LabVIEW and APT Page 26

In a similar fashion we need to wire a second method, StopCtrl, as in Figure 6-17. This
complements the start control method to terminate communication prior to the program
finishing.

6) Display the ActiveX palette by right clicking the block diagram workspace to display
the functions palette and then navigate to Functions Palette / Connectivity /
ActiveX.

7) Select the Invoke Node icon to attach it to the cursor. Then drop the node onto the
block diagram.

8) Click the reference output connector of the StartCtrl invoke node to begin wiring.
Click the left hand edge of the while loop to complete the wiring segment.

9) Click the connector block just created on the left hand edge of the while loop to
begin wiring again. Click the right hand edge of the while loop to complete the wiring
segment.

10) Click the connector block just created on the right hand edge of the while loop to
begin wiring again. Click the reference input connector on the second invoke node.

11) Right click the white area of the second invoke node which by default displays the
word method. In the shortcut menu displayed select Methods. The available
methods are presented in a further shortcut menu. Select the StopCtrl method from
the list.

Note: The reference of the second invoke node enters and exits the while loop. Because
the while loop does not terminate until the stop button is pressed, the second invoke node
inputs cannot be satisfied and therefore will not execute until the loop is exited.

Figure 6-17 – Second Invoke Method wired to ActiveX control

12) Re-arrange the block diagram objects a shown in Figure 6.14 as necessary.

13) Click File/Save to save the changes

Guide to LabVIEW and APT Page 27

Passing parameters to an ActiveX method

ActiveX methods can have both input and output parameters and a return parameter. An
example of one such APT motor method, GetPosition, is shown in Figure 6-18.

Figure 6-18 – APT ActiveX method with Input\Output Parameters

In this particular method there is one input parameter, one output parameter and a return
parameter. For specific details regarding this method see the APT programming help file.

The input parameter lChanID is a data type passed in by value and subsequently needs to be
provided with an integer in this case. A pass through value is available to subsequent code
which is available on the output side of the parameter. This value is unchanged as it is used
by value.

The output parameter pfPosition is a data type returned by reference and subsequently
needs to be supplied with a data reference on both input and output. There are several
techniques to do this. The easiest to understand when reviewing code is to provide the same
variable as an input and as an output.

The return value is in this instance an integer, the value of which can simply be read and
used.

Figure 6-19 – ActiveX Method call with Inputs\Outputs and a Return Value

In the example shown in Figure 6-19, a local variable is used to provide the method
parameter a reference to a variable to satisfy the input requirements. This variable is the
same variable connected to the output of the parameter.

Effectively in Figure 6-19, reading from left to right, the method parameter is read, modified,
returned and set.

Complete the following steps to call the GetPosition method of the APT control object.

1) Select the Block Diagram window. If not visible, select Window/Show Block
Diagram.

2) Display the ActiveX palette by right clicking the block diagram workspace and

displaying the functions palette and navigating to Functions
Palette/Connectivity/ActiveX.

3) Select the Invoke Node icon to attach it to the cursor. Then drop the node
onto the block diagram within the while loop.

Guide to LabVIEW and APT Page 28

4) Select the wiring between the start and stop method which resides within the while
loop, press the delete key to remove the section of wire.

5) Click the connector block on the left hand edge of the while loop to begin wiring.
Click the reference input connector of the new invoke node to complete the wiring.

6) Similarly attach a wire to the reference output connector of the same invoke node
by clicking the connector to begin wiring. Click the connector block on the right hand
edge of the while loop to complete the wiring.

7) Right click the white area of the new invoke node which by default displays the word
method. In the shortcut menu displayed select Methods. The available methods are
presented in a further shortcut menu. Select the GetPosition method from the list.

8) The invoke node now automatically displays the correct method name and
parameters.

9) Right click the input connector of the parameter lChanID and select from the shortcut
menu displayed Create / Constant. A suitable data type constant is created and
wired automatically. The default value of zero is sufficient.

10) Right click the output connector of the parameter pfPosition and select from the
shortcut menu displayed Create / Indictor. An indicator, of the correct data type, is
created and wired automatically.

11) Right click the newly created indicator and select from the displayed shortcut menu
Create / Local Variable. A local variable is created which represents the indicator.
By default the variable is of a write type.

12) Right click the local variable and select from the shortcut menu Change To Read.

13) Wire the local variable to the input of the pfPosition parameter by clicking the
output connector of the local variable to begin wiring, then click the pfPosition input
connector of the new invoke node to complete the wiring.

14) Select File/Save to save the changes.

The resulting VI should look like that shown in Figure 6-20. Nodes and wiring can be
repositioned to reflect the example documented for ease of understanding in further sections
of this document.

Figure 6-20 - ActiveX Method call which returns information from APT

Guide to LabVIEW and APT Page 29

Controlling Code Execution Speed and Flow

Controlling Speed

Although not completely necessary to ensure correct VI execution, it is good programming
practice in LabView to limit code execution speed where possible. If we take the example that
has been built in the previous sections the code will attempt to read the motor controller’s
position as fast as possible and display for the user.
This is a good example of where program execution speed can be reduced without affecting
the program functionality. For a user displayed variable there is little to gain by updating at
speeds of more than 5Hz, as the user would not notice the extra speed and may even be
unreadable.
Within the while loop a short delay to hold execution by 200ms would ensure that the CPU
and APT system are not over burdened with unnecessary processing. A time delay VI can be
used to achieve this.

Complete the following steps to insert a wait call within the while loop to reduce the execution
speed of the loop.

1) Select the Block Diagram window. If not visible, select Window/Show Block
Diagram.

2)
3) Display the Timing palette by right clicking the block diagram to display the functions

palette and then navigate to Functions Palette/Programming/Timing.

4) Select the Wait (ms) icon to attach it to the cursor. Then drop the VI onto the block
diagram within the while loop.

5) Right click the input connector of the Wait(ms) VI and select Create/Constant from
the shortcut menu displayed. A constant, of suitable data type, is created and wired
automatically. Edit the default value by double clicking the constant and enter 200.
The units are milliseconds.

6) Select File/Save to save the changes.

Figure 6-21 – While loop with controlled execution speed

For every iteration of the while loop a single hold of execution will occur for 200ms. Note:
Because LabVIEW is inherently multithreaded any other process may continue to function
during the execution pause.

Guide to LabVIEW and APT Page 30

Controlling Flow

In LabVIEW,individual code segments can run in both series and parallel. This ability is due to
the nature of LabVIEW using multiple threads.

The APT ActiveX interface is a single threaded in process server and as such cannot be
accessed through multiple threads. i.e. parallel calls cannot be made. A example of just such
a parallel call attempt is shown in Figure 6-22.

Depending on a number of factors, including the number of physical processors, and the way
in which the VI was authored, the serial number property may be set before or after the
controller communications are started. The order can also vary with each execution. This can
be an extremely dangerous situation as code can then appear to be intermittent in correct
operation.

Figure 6-22 – Attempted parallel calls to APT software

Figure 6-23 shows a serial call to the serial number property followed by a call to start
controller communications. As all inputs to a node must be satisfied before it can execute and
only outputs can be set upon a VI’s execution, the start control method execution is held until
the serial number property is set first.
By interconnecting APT calls via data flow paths in this way a controlled program flow is
achieved.

Figure 6-23 – Serial calls to APT

At all times controlled code execution flow should be considered.

In some circumstances it can be beneficial to have parallel segments of code running. For
example when performing mathematical calculations which benefit from increased speed.

Guide to LabVIEW and APT Page 31

Error handling

Overview

During authoring of an application, some consideration should be given to handling situations
where code fails. This is especially the case when communicating with real pieces of
hardware that can be missing, or can exhibit electrical faults, and can also have error
responses and conditions of their own.

Although this is not a complete tutorial on error handling, this section covers two aspects
specifically associated with ActiveX and APT.

Handling ActiveX errors

ActiveX is a mechanism through which clients and servers may communicate in a windows
OS. This communication can at times fail due to invalid file registration, corrupt files and other
such problems.
Each call to a server via an ActiveX Inoke or property node has an error cluster input and
output.
The purpose of the error input is that if there is an error set the node will not be executed.
Any error that occurs during the ActiveX communication will subsequently set the error
output.

Connecting a series of nodes together with other error handling code ensures that should an
error occur a suitable error handling process can be executed.

Figure 6-24 – Basic Error Handling

In Figure 6-24 a very simplified error handler is shown that uses built in LabVIEW VIs. The
General Error Handler VI and the Clear Errors VI are arranged such that if an ActiveX or
runtime error occurs a message is displayed reporting the error after which the error cluster is
cleared.

Handling APT error return codes

APT methods return an integer which corresponds to an error code. A non zero error code
infers that a problem occurred that prevented the method from executing successfully. The
specific error code can be used to determine what problem occurred by referring to the APT
documentation. A return code of zero infers the method call was successful.

The method return code however needs to be inserted into the standard LabVIEW error
cluster in order to be acknowledged by other VI’s that have an error input. The basic error
handling for the ActiveX example shown in Figure 6-24 as it stands ignores the method return
code. So the ActiveX call may be successful but the method may fail, without this condition
being captured. However the code shown in Figure 6-25 inserts the error return code into the
error cluster.

Guide to LabVIEW and APT Page 32

Figure 6-25 – Error handling using the APT return code

In the above error handling scenario, if the return code is zero the result of the not zero logic
gate will result in a false output. The case structure will then execute the false case contents,
which simply passes on the error free data line to following code.

Should the method return an error code indicating that something has gone wrong, the not
zero logic gates output will be true. The case structure will then execute the true case
contents which change the error data cluster contents in the following way;

Error Status is set to true indicating an error.
Error Code is set to the error code returned by the APT method call.
Error source is set to indicate that the error refers to a call to APT.

Tip: Error source information could be elaborated to explain the exact location in code where
the error occurred. Also, the error code returned by APT could have an error offset added to
the code so not to conflict with other error codes produced by other sections of code within
the application.

The code required to incorporate method return codes into the error cluster could be formed
as a custom VI.

TIP: It is usually more convenient to form a VI for each method call which incorporates this
handling together with default method parameter values.

Guide to LabVIEW and APT Page 33

Complete the following steps to create a return code insertion VI.

1) Create a new VI by selecting from the menu bar File/New VI.

2) Right click the Front Panel workspace to display the Controls Palette then select
Modern/Array, Matrix & Cluster.

3) Select the Error In 3D.ctl icon to attach it to the cursor. Then drop the VI onto the
front panel.

4) Right click the Front Panel workspace to display the Controls Palette then select
Modern/Array, Matrix & Cluster.

5) Select the Error Out 3D.ctl icon to attach it to the cursor. Then drop the VI onto the
front panel.

6) Right click the Front Panel workspace to display the Controls Palette then select
Modern/Numeric.

7) Select the Numeric Control icon to attach it to the cursor. Then drop the VI onto the
front panel.

8) Rename the numeric control name by double clicking the default name “Numeric”
and change to “Return Code”.

9) Right click the numeric control. From the shortcut menu displayed select
representation/I32 to change the data format of the numeric control to a 32 bit
integer.

10) Arrange each of the controls as per Figure 6-26.

11) Select File/Save from the top menu bar, and save the VI in a suitable location. Call
the VI “Return Code Insertion.vi”.

Figure 6-26 – Return code insertion VI front panel

Guide to LabVIEW and APT Page 34

12) Right click on the VI icon at the top right of the Front Panel window. Select ‘Show
connector‘ from the shortcut menu.

13) Right click the connector and select ‘Patterns’ from the shortcut menu. Choose the
indicated pattern as shown in Figure 6-27.

Figure 6-27 – VI Connector Palette

14) Click inside the top left square of the connector pattern, then immediately click on the

Return code control on the front panel. The square on the connector will turn blue.

15) Click inside the bottom left square of the connector pattern, then immediately click
on the error in control on the front panel. The square on the connector will turn a dull
green.

16) Click inside the bottom right square of the connector pattern, then immediately click
on the error out control on the front panel. The square on the connector will turn a
dull green.

17) The resulting VI connector should appear as shown in Figure 6-28.

Figure 6-28 – VI Icon Switched to Terminal View

18) Right click the VI wiring connector and select from the shortcut menu Show Icon.

19) From the menu bar select Window / Show Block Diagram. The block diagram is

then shown.

20) Rearrange the three terminals in the block diagram as per Figure 6-29.

21) Right click the white workspace area of the block diagram to display the Functions
palette, then select Programming/Structures.

Guide to LabVIEW and APT Page 35

22) From the structures palette, select the Case Structure icon to attach it to the
cursor. Click once in the block diagram to specify the first corner of the case structure
and move the mouse to create a rectangular shape. Click once again to specify the
opposite corner. Refer to Figure 6-29 for case structure location.

23) Click on the error in terminal output connector, move the cursor to draw a straight
wire to connect to the left hand edge of the case structure. Click on the left hand
edge to complete the wire.

24) Click on the return code terminal output connector, move the cursor to draw a
straight wire to connect to the left hand edge of the case structure. Click on the left
hand edge to complete the wire.

25) Right click the white area of the block diagram to display the Functions palette, then
select Programming/Comparison to display the Comparison palette.

26) Select the Not Equal to 0? icon to attach it to the cursor. Click in the block diagram
to drop the VI to the left of the case structure. Refer to Figure 6-29 for location.

27) Click on the Return Code terminal output connector in the block diagram to begin
wiring. Click on the input connector of the Not Equal to 0? VI to complete the wiring.

28) Click on the Not Equal to 0? VI output connector in the block diagram to begin
wiring. Click the case selector input of the case structure to complete the wiring.

29) The VI at this stage should look something like Figure 6-29.

Figure 6-29 – Return Code VI Stage 1 build

30) Right click the white area of the block diagram to display the Functions palette,

then select Programming/Cluster, Class and Variant.

31) Select the Bundle By Name icon to attach it to the cursor. Click in the
block diagram to drop the VI inside the case structure (TRUE State).

32) Click on the error in wire attachment point on the left hand edge of the case
structure to begin wiring. Click on the input cluster connector on the Bundle By
Name Function to complete the wiring.

33) Click on the output cluster connector on the Bundle By Name Function to begin
wiring. Click on the right hand edge of the case structure to complete the wiring.

Guide to LabVIEW and APT Page 36

34) Right click on the element name (status) shown on the Bundle By Name Function.
Select Add Element. Repeat this action to add another element.

35) Right click the first element name and select from the shortcut menu Select
Element/Status.

36) Right click the second element name and select from the shortcut menu Select
Element/Code.

37) Right click the third element name and select from the shortcut menu Select
Element/Source.

38) Click on the case structure selector on the left hand edge to begin wiring. Click on
the Status element on the Bundle By Name Function to complete the wiring.

39) Click on the Return Code connector block on the left hand edge of the case structure
to begin wiring. Click on the Code element on the Bundle By Name Function to
complete the wiring.

40) Right click on the source element of the Bundle By Name Function and select from
the shortcut menu Create/Constant.

41) Double click on the string constant created and edit to “APT Error”

At this stage the VI should look something like Figure 6-30. This completes the wiring for
the ‘True’ part of the code.

Figure 6-30 – Return Code VI Stage 2 Build

42) Click on the right arrow button on the top edge of the case structure to the right of
the True state. The False state should now be shown which is empty as no code has
been inserted.

43) Click on the ‘error in’ connector block on the left hand edge of the case structure to
begin wiring. Click on the connector block on the right hand edge that was created in
the True case window. Clicking on the connector block to compete the wiring will turn
the connector from green with a white centre to solid green indicating all cases are
wired to this output connector.

44) Click on the error connector block on the right hand edge of the case structure to
begin wiring. Click on the input connector on the error out terminal to complete the
wiring.

45) The VI should now look like Figure 6-31.

Guide to LabVIEW and APT Page 37

Figure 6-31 – Return Code Insertion Vi Stage 3 Build

46) Save the VI. This completes the authoring of the return code insertion VI.

This VI can be inserted into other higher level VIs to ensure ActiveX method calls to APT
inject the APT error return code into the standard LabVIEW error data line.

Adding the APT Error Return Code to the Error Data Line

Using the previously created VI (Return Code Insertion.vi) this can be inserted into the
example that has been created so far to add error handling for APT method error codes.

Note. Further sub VIs could be formed to make code easier to follow and more compact
however in the example here this will not be done to allow easier following of the example.

Complete the following steps to add basic error handling for APT method errors to the
example VI.

1) Return to the Example VI block diagram by selecting from the menu bar
Window/Example.vi Block Diagram.

2) Right click on the block diagram in some white space and select from the shortcut

menu displayed Select a VI. Using the file browser locate the previously saved
Return Code Insertion VI. This attaches the VI to the cursor.

3) Drop the VI between the StartCtrl ActiveX method node and the case structure, and

above the reference line as shown in Figure 6-32.

4) Repeat the insertion of the Return Code Insertion VI in the second and third
positions as indicated in Figure 6-32.

Figure 6-32 – Return Code Insertion VIs added to Example VI

Guide to LabVIEW and APT Page 38

5) Right click the left hand edge of the while loop and select from the shortcut menu

Add Shift Register. This adds a shift register to the while loop. The shift register
takes data from a previous loop and feeds it back into the next loop.

6) Right click the error input connector on the HWSerialNum ActiveX property node and
select from the shortcut menu Create/Constant. This will create a default no error
state constant to initialise the error cluster line. This isn’t strictly necessary, but it does
ensure easier to read software.

7) Click the error output connector on the HWSerialNum ActiveX property node to

begin wiring. Click the error in connector on the StartCtrl ActiveX invoke node to
complete the wiring.

8) Click on the error out connector on the StartCtrl ActiveX invoke node to begin
wiring. Click the error in connection on the first Return Code insertion VI to
complete the wiring.

9) Click on the return value output of the StartCtrl ActiveX invoke node to begin wiring.
Click the Return Code input connector of the first Return Code Insertion VI to
complete the wiring.

10) Click on the error out connector of the first Return Code Insertion VI to begin
wiring. Click the shift register connector block on the left hand edge of the while
structure to complete the wiring.

11) Click the shift register connector block on the left hand edge of the while loop
structure to begin wiring. Click the error in of the GetPosition ActiveX invoke node to
complete the wiring. The diagram should now look like Figure 6-33.

Figure 6-33 – First Return Code Insertion VI Wired Up

12) Click on the error out connection of the GetPosition ActiveX method node to begin
wiring. Click the error in connection of the second Return Code Insertion VI to
complete the wiring.

13) Click on the return value output of the GetPosition ActiveX invoke node to begin
wiring. Click the Return Code input connector of the second Return Code Insertion
VI to complete the wiring.

Guide to LabVIEW and APT Page 39

14) Click on the error out connector of the second Return Code Insertion VI to begin
wiring. Click the shift register connector block on the right hand edge of the while
structure to complete the wiring.

15) Click on the shift register connector block on the right hand edge of the while loop to
begin wiring. Click the error in connector of the StopCtrl ActiveX invoke node to
complete the wiring – see Figure 6-34.

Figure 6-34 – Second Return Code Insertion VI Wired Up

16) Click on the error out connector of the StopCtrl ActiveX invoke node to begin wiring.

Click on the error in connector of the third Return Code Insertion VI to complete the
wiring.

17) Click on the return value output of the StopCtrl ActiveX invoke node to begin wiring.

Click the Return Code input connector of the third Return Code Insertion VI to
complete the wiring.

18) Right click the error out connector of the third Return Code Insertion VI and select
from the shortcut menu Create/ Indicator. This creates a corresponding front panel
indicator that allows any resulting error to be displayed whilst running the VI – see
Figure 6-35.

Figure 6-35 – Third Return Code Insertion VI Wired Up

Guide to LabVIEW and APT Page 40

There is one more additional piece of code that needs to be added to enable the while loop to
terminate in case of an error. At present if an error occurred whilst in the while loop it would
continue until the stop button was pressed.

To add the ability to stop the while loop on demand, or when an error occurs, some OR logic
needs to be added. To do this the wiring between the stop button terminal and the while
loop stop node needs to be removed and replaced with some Boolean logic.

19) Display the Cluster, Class & Variant palette by right clicking the white area of the
block diagram and select from the shortcut menu Programming/Cluster, Class &
Variant.

20) Select the Unbundle by Name icon to attach it to the cursor. Click in the
block diagram to drop the VI inside the while loop structure.

21) Click on the error wire connected to the output connector on the third Return Code
Insertion VI to begin wiring. Click on the Unbunble By Name node input connector
on the left hand side to complete the wiring. At this point the Unbundle by Name VI
will show the first member of the error cluster which is the Boolean error status.

22) Display the Boolean palette by right clicking the white workspace area of the block
diagram and select from the shortcut menu Programming/Boolean.

23) Select the OR icon to attach it to the cursor. Click in the block diagram to
drop the VI inside the while loop structure.

24) Click on the wiring between the stop button terminal and the while loop stop node,

this should select it, and press the delete key to remove. Depending upon how the
wiring was routed smaller parts of the wiring may remain, and can be selected and
removed in the same way. Ensure all parts of the wire are removed.

25) Click on the status element of the Unbundle by Name node within the while loop to

begin wiring. Click on the x input connector of the OR function to complete the wiring.

26) Click on the output connector of the stop button terminal to begin wiring. Click on the
y connection input of the OR function to complete the wiring.

27) Click on the output connector of the OR function to begin wiring. Click on the while
loop stop node to complete the wiring.

28) The resulting Example VI should look something like that in Figure 6-36.

Figure 6-36 – Example VI with basic error handling

Guide to LabVIEW and APT Page 41

Running a VI with APT

The Example VI can be run from either the block diagram or the front panel. It is preferential
in most cases to run from the front panel as all the visible controls are located within this
window.

For this particular explanation of how to run the VI it is assumed that we are communicating
with a simulated DC motor controller (TDC001) with a serial number of 83123456. To
configure the APT software for a particular hardware configuration, refer to the APT software
help files and documentation.

Complete the following steps to start, operate and stop the VI.

1) If not already viewing the front panel of the Example VI select from the menu bar
Window/Example.vi Front Panel to switch the view.

Note: If using real hardware, the 8 digit serial number entered at item (3) will depend upon the
individual controller you are using.
For the purposes of this tutorial, a simulated configuration will be used to run the VI, based on
the TDC001 unit. If using real hardware, ignore item (2).

2) Run the APTConfig utility and set up a simulated configuration using a TDC001 unit.
Refer to the help file (Start/Programs/Thorlabs/APT/Help/APTConfig Help) for
instructions on how to set up a simulated configuration.

3) If required - Click on the serial number control window to set the serial number of the

controller. Edit the serial number to 83123456.

Figure 6-37 – Example VI with serial number entered

Guide to LabVIEW and APT Page 42

4) Click the ‘Run’ button in the Front Panel menu bar. DO NOT click the ‘Run
Continuously’ button.

5) The VI will start and there will be a short delay of several seconds whilst
communication with the APT controller is established.

6) Once communication is established the virtual control panel of the APT controller will
become activated and will display live data. e.g. current position.

Figure 6-38 – Example VI with live data

Pressing the jog buttons of the APT virtual control panel - notice that the position indicator on
the front panel above the virtual panel also is updated. This indicator is populated from
information gathered from the APT system via ActiveX as per the block diagram.

7) Press the stop button control on the front panel to terminate the VI. Do not stop the VI
using the stop button on the menu tool bar.

Pressing the stop button terminates the block diagram while loop and executes the ActiveX
call to stop communication. Finally the VI is stopped and the run button is released.

Within the LabVIEW development environment it is possible to stop execution by pressing the
stop button on the menu toll bar. It should be noted that in stopping the VI in this manner does
not stop communication to the APT controls and any such disconnection of the equipment will
result in an error dialogue.

Guide to LabVIEW and APT Page 43

Debugging a VI

 - Run Button.

 - Run Continuous Button.

 - Stop Button.

 - Highlight Execution Button.

 - Retain Wire Values Button.

 - Step Into Button.

 - Step Over Button.

 - Step Out Button.

Figure 6-39 – Execution Controls on the menu tool bar

Running a VI with Highlighted Execution

It is possible to view an animation of the execution of the block diagram by clicking the
Highlight Execution menu tool button, shown in Figure 6-39. Highlighted execution shows
the movement of data within the block diagram from one node to another using popup
bubbles that move along the wires. Use execution highlighting in conjunction with other
techniques to see how data moves from one node to the next.

Note Highlighted execution greatly reduces the speed at which a VI runs.
If the error out cluster reports an error, the error value appears next to error out. If no error
occurs, OK appears next to error out.

To examine the example VI in highlighted execution follow the steps below.

1) Arrange both the block diagram and the front panel such that they are both visible.

Note: Select from the menu bar Windows/Show Front Panel if the front panel is not visible.
Similarly if the block diagram is not visible select Windows/Show Block Diagram.

2) Click the highlighted execution menu tool bar button in the block diagram so that
the light bulb icon is illuminated.

3) Press the Run button to begin execution.

During execution observe the popup bubbles that display data as each node is entered and
exited. Also note the slow execution.

Guide to LabVIEW and APT Page 44

4) Press the stop button control on the front panel to stop execution. Do not press the
stop button on the menu tool bar.

5) The VI will terminate its while loop, stop communications and stop execution.

6) Click the highlighted execution menu tool bar button in the block diagram so that the
light bulb icon is extinguished. This restores the VI to normal execution.

Observing the animation of the executing VI can reveal a number of unexpected problems
and is one of the first tools to deploy in the event of an unexpected result or error.

Stepping Through a VI

Single-step through a VI to watch and evaluate each step within the VI on the block diagram
The single-stepping buttons, shown in Figure 6-39 affect execution only in a VI or subVI in
single-step mode.

Enter single-step mode by clicking the Step Over or Step Into menu tool bar button on the
block diagram toolbar. Subsequent presses of the Step Into, Step Over and Step Out will
have the following actions.

Step Into - Executes the next action within the block diagram or enters a sub-VI.

Step Over - Executes the next action within the block diagram or complete sub VI.

Step Out - Executes the remainder of the current VI.

To observe the stepping through the example VI complete the following steps.

1) Arrange both the block diagram and the front panel such that they are both visible.

Note: Select from the menu bar Windows/Show Front Panel if the front panel is not visible.
Similarly if the block diagram is not visible select Windows/Show Block Diagram.

2) Click the Step Into menu toolbar button in the block diagram so to begin execution.
Notice that the pause button is illuminated and that the first action is flashing. This
indicates that the VI is paused and that the first action as executed.

3) Press the Step Into button twice more.

4) The virtual control panel should now be active as both the serial number property
node and start control node have been executed. The VI is again paused and the
next action is flashing.

5) Press the Step out menu toolbar button to continue to execute to the end of the
example VI.

6) Press the stop button control on the front panel to terminate the VI.

7) Notice that the VI doesn’t terminate completely as the stepping mode has paused the
VI once again before exiting.

8) Press the Step out button to complete the VI.

Guide to LabVIEW and APT Page 45

Note: Pressing the Step Over button allows stepping execution to skip a sub VI should the
user be confident that a problem doesn’t occur within it.

Probe Tools

Figure 6-40 – Probe Tool Icon

The Probe tool can be used to check intermediate data on a wire as a VI runs. Use the Probe
tool if you have a complicated VI with a number of operations, any one of which might return
incorrect data. The probe tool is available from the Tools palette (View/Tools Palette).

If data is available, the probe will immediately update during execution allowing the user to
inspect data at specific points within the block diagram.

Types of Probes
You can check intermediate data on a wire when a VI runs by using the Generic probe, by
using an indicator from the Controls palette to view the data, by using a supplied probe, by
using a customized probe

In this document we will only discuss the generic probe. See LabVIEW documentation for
further details of other probe types.

Generic probe

Use the generic probe to view the data that passes through a wire. While the VI is paused or
stopped right click a wire and select Probe from the displayed shortcut menu.
The generic probe will display the data appropriately.

To examine the use of the probe tool complete the following steps.

1) Open and arrange both the block diagram and the front panel such that they are
both visible.

Note: Select from the menu bar Windows/Show Front Panel if the front panel is not visible.
Similarly if the block diagram is not visible select Windows/Show Block Diagram.

2) Within the block diagram right click the wire connecting the position output of the
GetPosition ActiveX invoke node (pfPosition output) to the pfPosition indicator
terminal. From the shortcut menu displayed select Probe.

3) A probe is automatically created with the correct data type, and in this instance shows
a numeric indicator control. See Figure 6-41.

Guide to LabVIEW and APT Page 46

Figure 6-41 – Generic Probe Tool In Use

4) Press the Run button to start the VI.

5) Notice that the probe tool text and data now changes colour from a dull grey to

black. This indicates that the data displayed has been updated.

6) Press the jog up and down buttons on the APT virtual control panel to move the
motor and notice that the probe displays the same data. As the while loop is
repeatedly executed the probe samples the data on the wire it is associated with on
each execution.

7) Press the stop button control on the front panel to stop the VI.

8) Press the red close cross on the probe to remove it.

Breakpoints

Figure 6-42 – Breakpoint Tool Icon

The Breakpoint tool, shown in Figure 6-42, can be used to place breakpoints on a VI, nodes,
and wires within the block diagram and pause execution at that location. When you set a
breakpoint on a wire, execution pauses after data passes through the wire. Place a
breakpoint on the block diagram to pause execution after all elements in the block diagram
have executed. The Breakpoint tool is available from the Tools palette (View/Tools Palette).

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to the front and
highlights the node or wire that contains the breakpoint.

When you reach a breakpoint during execution, the VI pauses and the Pause button on the
menu toolbar appears red. You can then take the following actions:

• Single-step through execution using the single-stepping buttons.

Guide to LabVIEW and APT Page 47

• Probe wires to check intermediate values.
• Change values of front panel controls.
• Click the Pause button to continue running to the next breakpoint or until the VI finishes.

LabVIEW saves breakpoints within a VI. You can view all breakpoints by selecting
Operate/Breakpoints from the main menu bar and then pressing the find button in the
dialogue window that opens.

Figure 6-43 – Finding Breakpoints

Guide to LabVIEW and APT Page 48

APT Event Dialogue

Figure 6-44 – Example Event Dialogue Window

The APT Event Information Panel is a window that allows the developer to understand why
a particular event occurred. An event could be a warning or an error.

Method calls made into the APT software and operation of the APT system as a whole are
continuously monitored for problems. Should a warning condition or error occur, a dialogue
window is displayed such as that in Figure 6-44.

The window shows a time stamped series of events up to and including the warning or error
condition.

The event is described for the developer as well as giving notes and extra information as to
the possible cause. Should the cause of the event not be understood clearly the event log can
be saved and passed to technical support for analysis and further assistance.

See the APT programming help file for further information on event reporting configuration,
and for disabling for deployed applications.

Guide to LabVIEW and APT Page 49

Chapter 7 - Event Driven Programming

What are Events?

An event is an asynchronous notification that something has occurred. Events can originate
from hardware, the user interface or other parts of the program. User interface events include
human interface devices such as mouse clicks and key presses. Hardware events occur
when some situation has arisen or when an error condition occurs.
Other types of events can be generated programmatically and used to communicate with
different parts of the program.

In an event-driven program, events that occur in the system directly influence the execution
flow. In contrast, a procedural program executes in a pre-determined, sequential order. Event-
driven programs usually include a loop that waits for an event to occur, executes code to
respond to the event, and continues to wait for the next event.

The order in which an event-driven program executes depends on which events occur and on
the order in which they occur. Some sections of the program might execute frequently
because the events they handle occur frequently, and other sections of the program might not
execute at all because the events never occur.

Why Use Events?

Events allow you to execute a specific event-handling case each time a user performs a
specific action or a piece of hardware reports a situation.
Without events, the block diagram must poll the state of front panel controls in a loop,
checking to see if any change has occurred. Polling the front panel requires a significant
amount of CPU time and can fail to detect changes if they occur too quickly.

By using events to respond to specific actions, you eliminate the need to poll the front panel
to determine which actions the user performed or hardware has reported. Instead, LabVIEW
actively notifies the block diagram each time an interaction you specified occurs. Using events
reduces the CPU requirements of the program, simplifies the block diagram code, and
guarantees that the block diagram can respond to all actions the user makes or hardware
reports.

Registering and Handling an APT ActiveX Event

When handling an ActiveX event, you must register for the event and then create a callback
VI to handle that event.

Complete the following steps to register and handle an ActiveX event in LabVIEW.

1) If not already, open the Example VI.

2) View the block diagram of the example by selecting from the menu bar Window /
Show Block Diagram.

3) Display the ActiveX palette by right clicking the block diagram workspace to display
the functions palette and then navigating to Connectivity/ActiveX.

Guide to LabVIEW and APT Page 50

4) Select the Register Event CallBack icon to attach it to the cursor. Then
drop the VI onto the block diagram.

5) Click the wire connected to the reference out node of the StartCtrl invoke node to
begin wiring. Click the event source ref input of the Register Event Callback
function to complete the wiring.

6) Click the arrow in the ‘Event’ panel, and select MoveComplete from the drop down

menu.

7) Right click the VI Ref input node and select Create Callback VI. This automatically
creates a VI with the correct event information.

8) Save the new VI as “MoveComplete Event Callback.vi”. Select File/Save As…
from the menu bar, select a suitable location to save the file and enter the VI name.
Press Save.

9) The Example VI should now look like Figure 7-1.

Figure 7-1 – Example VI with Event Callback

Currently there is nothing in the new MoveComplete Event Callback VI that will perform any
function. Figure 7-2 shows the block diagram contents that have automatically been
generated. To see the event call back operating it is necessary to add some code into the VI.

Guide to LabVIEW and APT Page 51

Figure 7-2 – MoveComplete Event Callback VI Block Diagram

10) Double click the call back VI in the Example VI block diagram.

11) From the menu bar of the MoveComplete Event Callback VI select Window / Show

Block Diagram.

12) Right click the output connector of the Event Data cluster and select from the
shortcut menu Cluster, Class & Variant/Unbundle By Name. Then drop the
function onto the block diagram.

13) Click the output connector of the Event Data cluster to begin wiring. Click the input
connector of the Unbundle By Name function to complete the wiring. The Unbundle
By Name function will automatically select the first element in the cluster. As this
particular event has only one event parameter this will suffice.

14) Right click the block diagram white space to display the Functions palette and
navigating to Programming/String in the shortcut menu. Select the Format Into

String icon to attach it to the cursor. Then drop the function onto the block
diagram.

15) Click on the output connector of the Unbundle By Name (lChanID) function to begin
wiring. Click on Input 1 of the Format Into String function to complete the wiring.

16) Right click the Initial String connector on the Format Into String function and from
the shortcut menu select Create / Constant.

17) Edit the string constant created, by double clicking the contents, and enter the text
“Move Complete on Channel “, including the space after the word ‘channel’.

18) Right click the block diagram white space to show the Functions palette, and
navigating to Programming/Dialogue & User Interface in the shortcut menu. Select

the One Button Dialogue icon to attach it to the cursor. Then drop the
function onto the block diagram.

19) Click the resulting string output connector of the Format Into String function to
begin wiring. Click the message input connector of the One Button Dialogue
function to complete the wiring.

Guide to LabVIEW and APT Page 52

20) The VI block diagram should now look something like Figure 7-3.

Figure 7-3 - MoveComplete Event Callback VI Block Diagram

When the Example VI is run, any time a movement of the controller occurs and stops the
move complete event will be fired which in turn will make a call back to the VI registered for
the event.

21) Return to the Example VI front panel by selecting from the menu bar Window /
Example.vi Front Panel.

22) Run the VI by pressing the run button on the menu toolbar.

23) Once the APT virtual control panel has become active and is displaying the current
position press the up and down arrows on the panel to move the motor attached.
Notice that every time there is a jog movement a message prompt is created which
needs to be acknowledged by pressing Ok.

The message prompt is displayed due to the event making a call to the code contents of the
MoveComplete Event Callback VI. Although this in itself is not entirely useful this idea can
be expanded upon to handle multiple events and to execute more interesting blocks of code.

Guide to LabVIEW and APT Page 53

Glossary

Block Diagram Pictorial description or representation of a program. The block diagram
consists of executable icons called nodes and wires that carry data
between the nodes. The block diagram is the source code for the VI.

Boolean controls
and indicators

Front panel objects to manipulate and display Boolean (TRUE or
FALSE) data.

Breakpoint Pause in execution point within a VI used for debugging.

Breakpoint Tool Tool to set a breakpoint on a VI, node, or wire.

Cluster A set of ordered, none indexed data elements of any data type,
including numeric, Boolean, string, array, or another cluster. The
elements must be all controls or all indicators.

Connector Part of the VI or function node that contains input and output terminals.
Data passes to and from the node through a connector.

Control Front panel object for entering data into a VI interactively, such as a
knob or push button.

Data Type Format of information. In LabVIEW, acceptable data types for most VIs
and functions are numeric, array, string, Boolean, refnum, enumeration,
and cluster.

Error In Error structure that enters a VI.

Error Message Indication of a software or hardware malfunction or of an unacceptable data.

Error Out The error structure that leaves a VI.

Error Structure Consists of a Boolean status indicator, a numeric error code indicator,
and a string source indicator.

Execution
Highlighting

Debugging technique that animates VI execution to illustrate the data
flow in a VI.

For Loop Iterative loop structure that executes a block of code a set number of times.

Equivalent to text-based code: For i = 0 to n – 1, do...

Front Panel Interactive user interface of a VI.

Functions Palette Palette that contains VIs, functions, block diagram structures, and
constants.

Icon Graphical representation of a node in a block diagram.

Menu Bar Horizontal bar that lists the names of the main menus of an application.
The menu bar appears below the title bar of a window. Most
applications have a menu bar that is distinct for that application.

Multithreaded
Application

An application that runs several different threads of execution
independently. On a multiple processor computer, the different threads
might be running on different processors simultaneously.

Guide to LabVIEW and APT Page 54

Node Program execution element. Nodes are analogous to statements,
operators, functions, and subroutines in text-based programming
languages.

On a block diagram, nodes include functions, structures, and subVIs.

Numeric controls
and indicators

Front panel objects to manipulate and display numeric data.

Object Generic term for any item on the front panel or block diagram, including
controls, indicators, nodes, and wires.

OS Operating System

Palette Display of icons that represent possible options.

Probe Debugging feature for checking intermediate values in a VI.

Probe Tool Tool to create probes on wires.

Shift Register Optional mechanism in loop structures to pass the value of a variable
from one iteration of a loop to a subsequent iteration. Shift registers are
similar to static variables in text-based programming languages.

Shortcut Menu Menu accessed by right-clicking an object. Menu items pertain to that
object specifically.

String Representation of a value as text.

String controls
and indicators

Front panel objects to manipulate and display text.

Structure Graphical representation of loops and sequences

SubVI VI used in a block diagram of another VI. Comparable to a subroutine in
text based programming applications.

Terminal An object in the block diagram that passes data to and from the front panel

Tools Palette Palette that contains tools you can use to edit and debug front panel
and block diagram objects.

Wire Data path between nodes.

Wire Bend Point where two wire segments join.

Wire Branch Section of wire that contains all the wire segments from junction to
junction, terminal to junction, or terminal to terminal if there are no
junctions between.

Wire Junction Point where three or more wire segments join.

Wire Segments Single horizontal or vertical piece of wire.

Wire Stubs Truncated wires that appear next to unwired terminals when you move
the Wiring tool over a VI or function node.

Wiring Tool Tool to define data paths between terminals.

Guide to LabVIEW and APT Page 55

Short Cut Quick Reference

Objects and Movement
Shift-click Selects multiple objects; adds object to

current selection.
↑↓→← (arrow keys) Moves selected objects one pixel at a time.
Shift-↑↓→← Moves selected objects several pixels at a

time.
Shift-click (drag) Moves selected objects in one axis.
Ctrl-click (drag) Duplicates selected object.
Ctrl-Shift-click (drag) Duplicates selected object and moves it in

one axis.
Shift-resize Resizes selected object while maintaining

aspect ratio.
Ctrl-resize Resizes selected object while maintaining

center point.
Ctrl-Shift-resize Resizes selected object while maintaining

center point and aspect ratio.
Ctrl-drag a rectangle Inserts more working space on the front

panel or block diagram.
Ctrl-A Selects all items on the front panel or block

diagram.
Ctrl-Shift-A Performs last alignment operation on objects.
Ctrl-D Performs last distribution operation on

objects.
Double-click open space Places a free label on the front panel or block

diagram if automatic tool selection is enabled.
Ctrl-mouse wheel Scrolls through sub-diagrams of a Case,

Event, or Stacked Sequence structure.
Spacebar (drag) Disables preset alignment positions when

moving labels or captions.
Ctrl-U Reroutes all wires and rearranges block

diagram objects automatically.

Debugging
Ctrl ↓ Steps into node.
Ctrl → Steps over node.
Ctrl ↓ Steps out of node.

Basic Editing
Ctrl-Z Undoes last action.
Ctrl-Shift-Z Redoes last action.
Ctrl-X Cuts an object.
Ctrl-C Copies an object.
Ctrl-V Pastes last cut or copied object.

Guide to LabVIEW and APT Page 56

Navigating the LabVIEW Enviroment
Ctrl-E Displays block diagram or front panel.
Ctrl-# Enables or disables grid alignment.
Ctrl-/ Maximizes and restores window.
Ctrl-T Tiles front panel and block diagram windows.
Ctrl-F Finds objects or text.
Ctrl-G Searches VIs for next instance of object or

text.
Ctrl-Shift-G Searches VIs for previous instance of object

or text.
Ctrl-Shift-F Displays the Search Results window.
Ctrl-Tab Cycles through LabVIEW windows.
Ctrl-Shift-Tab Cycles the opposite direction through

LabVIEW windows.
Ctrl-Shift-N Displays the Navigation window.
Ctrl-I Displays the VI Properties dialog box.
Ctrl-L Displays the Error list window.
Ctrl-Y Displays the History window.
Ctrl-Shift-W Displays the All Windows dialogue box.
Ctrl-Space Displays the Quick Drop dialogue box.

Navigating the VI Hierarchy Window
Ctrl-D Redraws the window.
Ctrl-A Shows all VIs in the window.
Ctrl-click VI Displays the subVIs and other nodes that

make up the VI you select in the window.
Enter † Finds the next node that matches the search

string.
Shift-Enter † Finds the previous node that matches the

search string.
† After initiating a search by typing in the VI Hierarchy window

File Operations
Ctrl-N Creates a new VI.
Ctrl-O Opens an existing VI.
Ctrl-W Closes the VI.
Ctrl-S Saves the VI.
Ctrl-Shift-S Saves all open files.
Ctrl-P Prints the window.
Ctrl-Q Quits LabVIEW.

Help
Ctrl-H Displays the Context Help window.
Ctrl-Shift-L Locks the Context Help window.
Ctrl-? or F1 Displays the LabVIEW Help.

Guide to LabVIEW and APT Page 57

Tools and Palettes
Ctrl Switches to next most useful tool.
Shift Switches to Positioning tool.
Ctrl-Shift over
open space

Switches to Scrolling tool.

Spacebar † Toggles between two most common tools.
Shift-Tab † Enables automatic tool selection.
Tab † Cycles through four most common tools if

you disabled automatic tool selection by
clicking the Automatic Tool Selection
button. Otherwise, enables automatic tool
selection.

↑↓→← Navigates temporary Controls and
Functions palettes.

Enter Navigates into a temporary palette.
Esc Navigates out of a temporary palette.
Shift-right-click Displays a temporary version of the Tools

palette at the location of the cursor.
† If automatic tool selection is disabled

SubVISs
Double-click subVI Displays subVI front panel.
Ctrl-double-click subVI Displays subVI block diagram and front

panel.
Drag VI icon to block diagram Places that VI as a subVI on the block

diagram.
Shift-drag VI icon to block diagram Places that VI as a subVI on the block

diagram with constants wired for controls that
have non-default values.

Ctrl-right-click block diagram and select
VI from palette

Opens front panel of that VI.

Execution
Ctrl-R Runs the VI.
Ctrl-. † Stops the VI.
Ctrl-M Changes to run or edit mode.
Ctrl-Run button Recompiles the current VI.
Ctrl-Shift-Run button Recompiles all VIs in memory.
Ctrl-↓ Moves key focus inside an array or cluster.
Ctrl ↑ Moves key focus outside an array or cluster.
Tab † Navigates the controls or indicators according

to tabbing order.
Shift-Tab † Navigates backward through the controls or

indicators.
† While the VI is running

Guide to LabVIEW and APT Page 58

Text
Double-click Selects a single word in a string.
Triple-click Selects an entire string.
Ctrl-→ Moves forward in string by one word.
Ctrl-← Moves backward in string by one word.
Home Moves to beginning of current line in string.
End Moves to end of current line in string.
Ctrl-Home Moves to beginning of entire string.
Ctrl-End Moves to end of entire string.
Shift-Enter Adds new items when entering items in

enumerated type controls and constants, ring
controls and constants, or Case structures.

Esc Cancels current edit in a string.
Ctrl-Enter Ends text entry.
Ctrl-= Increases the current font size.
Ctrl-- Decreases the current font size.
Ctrl-0 Displays the Font dialog box.
Ctrl-1 † Changes to the Application font.
Ctrl-2 † Changes to the System font.
Ctrl-3 † Changes to the Dialog font.
Ctrl-4 † Changes to the current font.
† In the Font dialog box

Wiring
Ctrl-B Removes all broken wires.
Esc, right-click, or click terminal Whilst wiring cancels a wire you started.
Single-click wire Selects one segment.
Double-click wire Selects a branch.
Triple-click wire Selects entire wire.
A While wiring, disables automatic wire routing

temporarily.
Double-click While wiring, tacks down wire without

connecting it.
Spacebar While wiring, switches the direction of a wire

between horizontal and vertical.
spacebar Whilst moving objects, toggles automatic

wiring.
Ctrl-click input on function with two
inputs

Switches the two input wires.

Shift-click While wiring, undoes last point where you set
a wire.

