CHAPTERS

Menio Systems

SECTIONS

CW Fiber Lasers

Frequency Combs

ASOPS

Stabilization

Femtosecond Fiber Lasers

THz

Detectors

FC1500-250-WG: Er-Doped Optical Frequency Synthesizer

The FC1500-250-WG Optical Frequency Synthesizer is a compact and flexible fiber-based femtosecond frequency comb system. With an extension package for the visible spectral range, the system provides a stabilized optical frequency comb for frequency metrology in both the visible and near infrared spectral regions. A wide range of optional units enables us to tailor this versatile system to customer-specific metrology solutions.

The optical frequency comb technology and its stabilization are covered by several international patents (e.g., see EU patent EP 1161782 and US patent 6,785,303 B1). Menlo Systems holds the exclusive rights on the patents. The 2005 Nobel Prize in Physics was awarded to one of the founders of Menlo Systems, Theodor W. Hänsch, and J. Hall for their invention of the frequency comb technology.

Base Unit

 FC1500-250-WG M-Comb oscillator, P250 PULSE-EDFA amplifier, XPS 1500 wave guided f:2f interferometer with electronic control tower

Optional Units

- M-NIR extension package extends the stabilized comb spectrum to the 1050 2100 nm range
- M-VIS extension package extends the stabilized comb spectrum to the 530 900 nm range
- P250 PULSE-EDFA erbium-doped fiber amplifier for high-power output at 1560 nm
- 780 Measurement Port for high-power output at 780 nm
- HMP high-power measurement port for high-precision measurement of low-power lasers for user-defined wavelengths
- BDU-FS, BDU-FC, and BDU-FF broadband free-space and adjustment-free, fiber-coupled beat detection units

250 MHz

- SYNCRO-LLE electronics to phase lock the external CW lasers to the stabilized comb
- GPS 5-10 10 MHz frequency reference to serve as RF reference for the frequency comb

Specifications Comb Spacing

Accuracy* Stability*	10 ⁻¹⁴ 5x10 ⁻¹³ in 1 s	
	5x10-13 in 1 s	
T ' D (C ' D II'I 1C 1I'		
Tuning Range of Spacing Between Individual Comb Lines	>2 MHz	
Tuning Range of CEO Frequency	>250 MHz	
Optical Output Ports		
LC/APC Ports - Three Fiber-Coupled, Elliptically Polari	ized	
Center Wavelength	1560 nm	
Spectral Range	>35 nm	
Average Output Power	>18 mW from Each Port	
Extension Package to the Near Infrared		
NIR Measurement Port – Free-Space, Unpolarized		
Spectral Range	1050 - 2100 nm	
Average Output Power	>200 mW	
Extension Package to the Visible		
VIS Measurement Port – Free-Space, Unpolarized		
Spectral Range	530 - 900 nm	
Average Output Power	>60 mW	
Additional Amplifier at 1560 nm		
Average Output Power	>400 mW	
Pulse Length	<90 fs	
Optional Port at 780 nm		
Average Output Power	>150 mW	
High-Power Measurement Port** HMP633		
Average Output Power	>5 mW	

the femtosecond fiber laser and then spectrally broadens the amplified output in a highly nonlinear optical fiber. This supercontinuum comprises a comb of frequency lines, separated by the laser repetition rate and with an arbitrary frequency offset. By phase locking the comb spacing and the offset frequency to a radio frequency (RF) reference source, the comb will form an accurate frequency ruler for the 1050 to 2100 nm region.

The M-NIR extension package amplifies the light from

The operational range can be extended to the visible part of the spectrum by amplifying and frequency doubling part of the fiber laser output and then broadening it in a photonic crystal fiber. The visible comb spanning 530 - 900 nm retains the phase stability.

The frequency comb provides a direct link between the optical and microwave frequencies in both directions. Phase-locked to an RF reference, any unknown optical frequency can then be measured by simply comparing its frequency to that of the nearest tooth of the stabilized frequency comb. The accuracy of the measurement is only limited by the reference.

Conversely, by phase locking one tooth of the frequency comb to a continuous wave (CW) laser that is locked to a narrow atomic transition or high-finesse resonator, the frequency comb divides the extremely rapid optical oscillations of this optical reference to countable microwave frequencies.

ITEM #	\$	£	€	RMB	DESCRIPTION
FC1500-250-WG	CALL				Erbium Optical Frequency Synthesizer

For local and updated pricing, please call Menlo Systems, Inc. in North America 973-300-4490, Menlo Systems GmbH in Europe +49-89-189-1660, or Thorlabs Japan, Inc. in Asia +81-3-5979-8889, or email sales@menlosystems.com.