2波長マルチオーダー波長板


  • Operates as λ/2 @ λ1 & as λ/4 @ λ2
  • Dual Wavelength Operation: 532 nm and 1064 nm
  • Ø1/2" Waveplate Mounted in Ø1" Aluminum Mount

WPDM05M-1064H-532Q

WPDM05M-532H-1064Q

Wave Plate
Mounted in PRM1
Rotation Mount

Application Idea

Related Items


Please Wait
Wave Plate Engraving Update
Zemaxファイル
下の型番横の赤いアイコン(資料)をクリックすると、各製品のZemaxファイルをダウンロードいただけます。また、こちらからは当社の全てのZemaxファイルの一括ダウンロードが可能です。

特長

  • 1番目の波長は1/2波長板として、2番目の波長では1/4波長板として機能 
  • 2波長 AR Vコーティング: Ravg <0.25% @532 nmおよび1064 nm (0° AOI) 
  • Ø12.7 mm(Ø1/2インチ)サイズの波長板をØ25.4 mmアルミニウム製マウントに実装 
  • 開口: Ø10 mm(Ø0.39インチ)
  • カスタマイズも承ります。詳細については当社までお問い合わせください。 

当社の2波長(デュアル)マルチオーダ波長板は高品質の結晶石英(水晶)から作られ、1/2または1/4波長のリターダンスを与えます。波長板は2波長(1064 nm と532 nm)を使用した光学系向けに設計されており、1番目の波長では1/2波長板として、2番目の波長では1/4波長板として機能します。1064 nmで1/2波長と532 nmで1/4波長のタイプと、532 nmで1/2波長と1064 nmで1/4波長のタイプの2種類からお選びいただけます。 

「マルチオーダ」という言葉は、光路のリターダンスが、設計リターダンスに加えて波長の整数倍のシフト(オーダまたはmと呼ばれます)を起こすという事実を示しています。ゼロオーダ波長板に比べて、マルチオーダ波長板のリターダンスは波長や温度の変化に敏感ですが、低価格なのでこれらが問題とならない多くの用途で使われています。 

波長板は、前面に直線で波長板の速軸が印されたØ25.4 mm(Ø1インチ)の筐体に実装されています。特注や組み込み用途(OEM用途)向けに、波長板はマウントから簡単に取り外すことができます(マウント無しタイプの波長板の厚さは「仕様」タブを参照ください)。マウント無しの波長板には小さい切り欠きがあり、そのフラットな部分はファスト軸に平行になっています(右図参照)。波長板の使用や選択に関する詳細は「波長板のセレクションガイド」タブをご覧ください。

当社ではARコーティング無しまたは異なるARコーティング付き、あるいは下記以外の設計波長のカスタム波長板も製造可能です。詳細については当社までお問い合わせください。

Wave Plate Selection Guide
AchromaticSuperachromaticQuartz Zero-Order
Half-Wave
Quartz Zero-Order
Quarter-Wave
Polymer Zero-Order
Half-Wave
Polymer Zero-Order
Quarter-Wave
Multi-OrderDual WavelengthTelecomPolarization Optics
General Specifications
SubstrateCrystalline Quartz
Operating Wavelengths532 nm & 1064 nm
Clear ApertureØ10 mm (Ø0.39")
DiameterUnmounted: 12.7 mm ± 0.1 mm
Mounted: 25.4 mm
Retardance Accuracy (Typical)< λ/100 (Measured at 632.8 nm)
ReflectanceDual V AR Coating:
Ravg < 0.25% at 532 nm and 1064 nm (0° AOI)
Transmitted Wavefront Error< λ/10
Beam Deviation< 10 arcsec
Surface Quality20-10 Scratch-Dig
Item #Unmounted Wave Plate Nominal Thickness
WPDM05M-532H-1064Q1.1276532 mm
WPDM05M-1064H-532Q0.3038145 mm

波長板の動作原理

波長板は、2本の直交する軸方向の偏光に対して異なる屈折率を有する複屈折性材料から造られています。この複屈折性によって、波長板のファスト軸方向の偏光とスロー軸方向の偏光に速度の差が生じます。波長板のファスト軸方向の偏光に対する屈折率は小さいため、その方向に偏光した光は速く進みます。反対にスロー軸方向の偏光に対する屈折率は大きいので、その方向に偏光した光の速度は遅くなります。光が波長板を通過するとき、この速度の差によって2つの直交する偏光成分の間に位相差が生じます。実際の位相差は材料の特性、波長板の厚さ、および入射光の波長に依存し、次の式で表わされます。

Phase Shift

ここで、n1はスロー軸方向の偏光に対する屈折率、n2はそれに直交するファスト軸方向の偏光に対する屈折率、dは波長板の厚さ、λは入射光の波長です。

波長板の使用

波長板には一般的にリターダンスが1/4波長と1/2波長のものがあり、それぞれ波長の1/4または1/2の位相シフトが生じることを意味しています。

beam diagram
Half-Wave Plate Diagram

1/2波長板

上述のように、波長板にはファスト軸とスロー軸があります。各軸の屈折率が異なるので、それぞれの速度も異なります。1/2波長板に直線偏光が入射したとき、その偏光方向が波長板のどちらの主軸にも一致しない場合は、出射光は入射光の偏光方向を回転した直線偏光になります(右図参照)。円偏光が入射したときは、入射光の偏光が時計回り(反時計回り)であれば、出射光は反時計回り(時計回り)の円偏光になります。

1/2波長板は、偏光状態を回転させる目的で使用されることが一般的です。回転式マウントに1/2波長板を取り付けると、下図のように連続可変偏光ローテータとして使用できます。さらに偏光ビームスプリッタと一緒に使用することにより、1/2波長板は、分岐比が調整可能なビームスプリッタとして機能します。

出射偏光と入射偏光のなす角度は、入射偏光軸と波長板の軸がなす形成する角度の2倍となります(右下の図参照)。入射光の偏光が、波長板のいずれかの光軸と一致するとき、偏光状態の向きは変化しません。

Half-Wave Plate and Rotation Mount
Click to Enlarge

回転マウントRSP1X15(/M)に取り付けられた波長板
beam diagram

1/4波長板

1/4波長板はファスト軸方向とスロー軸方向の偏光に生じる位相差が1/4波長 (λ/4)になるように設計されています。波長板のファスト軸またはスロー軸に対して偏光方向を45°に設定した直線偏光を入射した場合、出射光は円偏光に変換されます(右図参照)。直線偏光を45°以外の角度に設定した場合は、出射光は楕円偏光に変換されます。反対に、円偏光を1/4 波長板に入射した場合、出射光は直線偏光になります。1/4波長板は光アイソレータ、光ポンプ、EO変調器などに使用されています。

waveplate fast axis engraving
Click to Enlarge

図1: (a、b):2018年10月から新しい工程で組み立てられた製品の刻印。(c、d):旧工程の製品の刻印

ファスト軸ならびにスロー軸の特定

当社は2018年10月に、波長板のファスト軸とスロー軸の決定に関するIEEE/SPIEによる取り決め(IEEE/SPIE convention: Polarization Handedness Tutorialを参照)に適合させるために、組立工程と関連製品の刻印を新しくしました。この取り決めにより、新しい工程で組み立てられた波長板のファスト軸には、右の図1のように「FAST AXIS」の刻印があります。波長板の主軸の位置とリターダンスを決定するのは比較的容易ですが、ファスト軸とスロー軸の識別方法は遥かに複雑です。

多くの用途においては、ファスト軸とスロー軸を識別することよりも、リターダンスの値を知ることの方が重要です。しかし、ファスト軸かスロー軸かによって1/4波長板から出射する円偏光の回転方向(左/右)が決まるため、原子物理学や固体物理学における分光分野では重要になる場合があります。表示の精度をより確実にするために、当社では下記のように製造工程に複数の試験を組み込みました。

waveplate fast axis uncoated metal reflection test setup
Click to Enlarge

 図2: 無コーティング金属面による反射を用いた試験のセットアップ
View Imperial Product List
型番数量Description
HNL020LB1HeNeレーザ、632.8 nm、2 mW、偏光ビーム出力、100~240 VAC
HCM21XY調整機能付きHeNeレーザーマウント、60mmケージシステム組込み用(インチ規格)
GTH10M-A2マウント付きグラントムソン方解石偏光子、開口10 mm x 10 mm、ARコーティング付き350~700 nm
RSP13Ø1インチ光学素子用回転マウント、#8-32タップ穴(インチ規格)
PM100D1小型パワー&エネルギーメーターコンソール、デジタル4インチLCD
S120C1標準フォトダイオードパワーセンサ、Si、400~1100 nm、50 nW~ 50 mW
SM1D12D1リング作動アイリス (Ø0.8~Ø12.0 mm)、SM1ネジ付き
KM100CP1Ø1インチ光学素子用キネマティックマウント、ポストセンタリングプレート付き(インチ規格)
RP011回転プラットフォーム(インチ規格)
SM1L203SM1レンズチューブ、ネジ深さ50.8 mm、固定リング1個付属
RS1.52Ø1インチピラーポスト、1/4”-20タップ穴、長さ1.5インチ(インチ規格)
TR1.53Ø1/2インチポスト、#8-32ネジ、1/4”-20タップ穴付き、長さ1.5インチ(インチ規格)
TR12Ø1/2インチポスト、#8-32ネジ、1/4”-20タップ穴付き、長さ1インチ(インチ規格)
RSH1.52Ø1インチポスト用ホルダ、フレクシャーロック機構、台座付き、長さ1.5インチ(インチ規格)
PH15Ø1/2インチポストホルダ、バネ付き六角固定つまみネジ付き、長さ1インチ (インチ規格)
PF1752台座付きØ38 mm(Ø1.5インチ)ポストまたは台座ベースアダプタ用クランプフォーク
RC14アリ溝式レールキャリア、25.4 mm x 25.4 mm、M6ザグリ穴付き
RLA12001アリ溝式光学レール、長さ12インチ (インチ規格)
RLA06001アリ溝式光学レール、長さ6インチ (インチ規格)
View Metric Product List
型番数量Description
HNL020LB1HeNeレーザ、632.8 nm、2 mW、偏光ビーム出力、100~240 VAC
HCM2/M1XY調整機能付きHeNeレーザーマウント、60mmケージシステム組込み用(ミリ規格)
GTH10M-A2マウント付きグラントムソン方解石偏光子、開口10 mm x 10 mm、ARコーティング付き350~700 nm
RSP1/M3Ø25 mm~Ø25.4 mm光学素子用回転マウント、M4タップ穴(ミリ規格)
PM100D1小型パワー&エネルギーメーターコンソール、デジタル4インチLCD
S120C1標準フォトダイオードパワーセンサ、Si、400~1100 nm、50 nW~ 50 mW
SM1D12D1リング作動アイリス (Ø0.8~Ø12.0 mm)、SM1ネジ付き
KM100CP/M1Ø25 mm~Ø25.4 mm光学素子用キネマティックマウント、ポストセンタリングプレート付き(ミリ規格)
RP01/M1回転プラットフォーム(ミリ規格)
SM1L203SM1レンズチューブ、ネジ深さ50.8 mm、固定リング1個付属
RS38/M2Ø25 mmピラーポスト、M6タップ穴、長さ38 mm(ミリ規格)
TR40/M3Ø12.7 mmポスト、M4ネジ、M6タップ穴付き、長さ40 mm(ミリ規格)
TR30/M2Ø12.7 mmポスト、M4ネジ、M6タップ穴付き、長さ30 mm (ミリ規格)
RSH1.5/M2Ø25 mm~Ø25.4 mmポスト用ホルダ、フレクシャーロック機構、台座付き、長さ38 mm(ミリ規格)
PH30/M5Ø12 mm~Ø12.7 mmポストホルダ、バネ付き六角固定つまみネジ付き、長さ30 mm (ミリ規格)
PF1752台座付きØ38 mm(Ø1.5インチ)ポストまたは台座ベースアダプタ用クランプフォーク
RC14アリ溝式レールキャリア、25.4 mm x 25.4 mm、M6ザグリ穴付き
RLA300/M1アリ溝式光学レール、長さ300mm (ミリ規格)
RLA150/M1アリ溝式光学レール、長さ150mm (ミリ規格)

 試験セットアップ1: n > 1の無コーティング金属面による反射

このセットアップはPetre Logofatu1の方法に基づいており、またGalgano and Henriques2にもその優れた要約が記載されています。この方法では、まず光源からの光を偏光ジェネレータに通しますが、これは水平方向に対して45°の方向を向いた直線偏光子です。その後、光は試験品(SUT)である波長板を通り、無コーティングの金属表面(n > 1の金属であれば十分)で反射され、アナライザ(ジェネレータに対して90°に配置された2つめの直線偏光子)を通ります。最後に、光はパワーセンサで測定されます。

右の図2に示している当社のセットアップでは、光源としてHeNeレーザ、偏光ジェネレータとアナライザとして2つのグラントムソン偏光子GTH10M-A、カスタム仕様の無コーティングステンレススチール反射面、パワーセンサS120C、およびパワーメーターコンソールPM100Dを使用しています。図2の下にはカスタム仕様の金属面とSUT以外に使用した部品のリストがご覧いただけます。

Logofatuに述べられているように、下の式のパワー反射係数Rは、フレネルの式から導かれ、これはSUTのファスト軸あるいはスロー軸が水平方向にあるか否かによって金属からの反射量が大きく異なることを示しています。

power reflection equation

ここでRp とRs Rのp偏光成分とs偏光成分、ΔはSUTのリターダンス、φは金属表面のp偏光とs偏光の反射係数の位相差です。これにより、どちらの主軸が水平方向に置かれたときに大きな反射を期待できるかが分かり、予測値と実験値の比較ができます。入射角を大きくするとs偏光とp偏光の反射係数の差は大きくなります。このことは反射量の測定値の大きさと相関するため、ファスト軸とスロー軸の判別がより容易になります。両論文と同じように、試験は様々な入射角で実施しています。その結果を理論曲線にあてはめています。

上記のRの式が、Logofatuの式とは異なるのは式に誤りを見つけたからです。こちらの反射係数の導出(PDF)で当社独自で行った導出を述べています。

waveplate fast axis lci test setup
Click to Enlarge

図 3:低コヒーレンス干渉計を用いた試験のセットアップ

試験セットアップ2: 低コヒーレンス干渉計

こちらの試験のセットアップでは、低コヒーレンス干渉計を使用して、SUTを回転させながら光路長(OPL)を測定します。最長の光路長がスロー軸、最短の光路長がファスト軸に対応します。この方法では、干渉計に改造を加え、結晶軸に沿う方向と垂直な方向の群屈折率(ngSUT)を計算できるように参照用ウィンドウと背面に反射鏡を追加して、さらに検証ができるようにしています。それらの値は既知の値と比較することができるため、この試験の信頼性を確かなものにすることができます。

右の図3に示す当社のセットアップでは、Bristol 157シリーズの光学的厚さゲージを改造して使用しています。下の図4でご覧いただけるように、低コヒーレンス干渉計の大部分は光学的厚さゲージaのシャーシ内に納められています。測定アームは当社の部品を用いて改造を行い、ファイバからの出力光は低NAの対物レンズにアライメントされており、直線偏光子LPNIR100を通ったのち、参照ウィンドウWG11010で部分的に反射されるようになっています。またこれらの部品はすべて34 mmレールに取り付けられています。その後、光はSUTと背面の反射鏡で反射され、干渉用の信号光は光学的厚さゲージに戻ります。

追加された参照面と測定から得られたそれらの物理的厚さは、測定結果の有効性を再確認するのに使用されます。これは、ファスト軸とスロー軸両方の群屈折率を求める簡単な計算によって行われます。図5は、このセットアップによって生成される出力信号を定性的に示しています。Peak 1と2は参照ウィンドウによって、Peak 3と4はSUT(波長板)によって、Peak 5は参照用の反射面によってそれぞれ生成されます。厚さのデータはPeak-to-Peakの信号からソフトウェアによって算出され、表に出力されます。波長板を挿入する前にPeak 2~Peak 5の距離を測ることにより、全体の物理的な距離Tair0が得られますb。波長板挿入後は、Peak 2~3の距離Tair1と、Peak 4~5の距離Tair2を測ります。この情報を利用し、Tair0からTair1とTair2を差し引くことにより、波長板の厚さ TSUT を簡単に求めることができます。Peak 3~Peak 4の距離を測定することにより、OPLSUTが分かります。OPLSUTをTSUTで割ると、SUTの群屈折率ngSUTが得られます。この群屈折率を、文献にある石英3あるいはMgF24 の結晶軸方向およびその垂直方向の群屈折率と比較すると、結果は一致します。

  • 図4は簡略化された図で、Bristol社の光学的厚さゲージの内部を正確には表していませんのでご注意ください。
  • このケースで要求される精度では、空気中の光路長(OPL)が全体の物理的な厚さに等しいと仮定しても十分です。
example LCI diagram
Click to Enlarge

図 4: 低コヒーレンス干渉計の図解例。測定アームに記載されている反射の番号は、図5のPeakの番号に対応しています
lci output
Click to Enlarge

図5: 光学的厚さゲージからの出射信号

  1. Logofatu, Petre-Catalin. "Simple method for determining the fast axis of a wave plate." Optical Engineering 41.12 (2002): 3316-3319.
  2. Galgano, G. D., and A. B. Henriques. "Determining the fast axis of a wave plate." Proceedings do ENFMC (2006).
  3. Ghosh, Gorachand. "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals." Optics communications 163.1-3 (1999): 95-102.
  4. Dodge, Marilyn J. "Refractive properties of magnesium fluoride." Applied Optics 23.12 (1984): 1980-1985.

Posted Comments:
srm37  (posted 2019-01-07 11:29:36.22)
Dear sir/madam, I was interested in these dual wavelength waveplates, but the system I'm using operates at 1050 nm and 515 nm. What performance quality would be expected using the waveplates as they are at those wavelengths? Cheers, Sam
YLohia  (posted 2019-01-09 04:02:07.0)
Hello Sam, thank you for contacting Thorlabs. As these are multi-order waveplates, unfortunately, the performance at non-design wavelengths is not optimal. I have reached out to you directly with data.
klee  (posted 2009-09-25 11:53:12.0)
A response from Ken at Thorlabs to olsonaj: We can do this as a special. We will send you a quotation by email.
olsonaj  (posted 2009-09-25 01:20:00.0)
This would be very useful if there was one that did 780nm and 1550 nm. (re: WPDM05M-1064H-532Q)

波長板の選択

当社では、位相差が1/4または1/2波長のアクロマティック波長板、スーパーアクロマティック波長板、ゼロオーダ波長板(マウント無しまたはマウント付き)、低オーダ波長板、マルチオーダ波長板(単波長対応またはデュアル波長対応)をご用意しています。

アクロマティック波長板は、広いスペクトル範囲にわたって比較的一定の位相リターダンスを与えるのに対し、スーパーアクロマティック波長板は、これよりも広いスペクトル範囲にわたってほぼ一定のリターダンスを与えます。これに対して、ゼロオーダおよびマルチオーダ波長板は、波長に強く依存した位相差が生じます。当社のアクロマティック波長板は260~410 nm、350~850 nm、400~800 nm、690~1200 nm、1100~2000 nmの5種類の動作範囲からお選びいただけます。また、スーパーアクロマティック波長板の動作範囲は310~1100 nm、または600~2700 nmからお選びいただけます。

Round Zero-Order Wave Plate Comparison
MaterialQuartzLCP
SizesØ1/2" and Ø1"Ø1/2", Ø1", and Ø2"
Mounted Versions AvailableYesYes
Retardances Available1/4 λ and 1/2 λ1/4 λ and 1/2 λ
Retardance Accuracy <λ/300 <λ/100
Surface Quality20-10 Scratch-Dig60-40 Scratch-Dig
CoatingV CoatBroadband AR
Coating Reflectance
(per Surface)
0.25%0.5% Average Over Specified Coating Range

ゼロオーダ波長板は、位相差が正確に1/4波長または1/2波長になるように設計されています。マルチオーダ波長板に比べると、温度や波長への依存性は小さいです。1/2波長板1/4波長板ともに1枚の波長板のファスト軸がもう1枚のスロー軸に合うように2枚重ねることによって、ゼロオーダの性能を実現しています。当社では266 nm~2020 nmの間の波長でゼロオーダ波長板を取り揃えています。ポリマーゼロオーダ1/2波長板および1/4波長板は、リターダンス効果のある液晶ポリマ(LCP)の薄層を2枚のガラスプレートに挟んでできており、405~1550 nmの間の波長でご用意しています。石英波長板はリターダンス確度が高く反射率が低いのに対し(表参照)、LCP波長板は大きな入射角でもリターダンスはわずかに減少するだけ、というそれぞれの特長があります。また、当社ではWDM用途向けにマウント無しのゼロオーダ通信用波長板もご用意しています。

中赤外域用波長板は、高品質のフッ化マグネシウム(MgF2)の単体から作られており、中心波長 2.5 µm、 3.5 µm、 4.0 µm、 4.5 µm、5.3 µmにおいて、1/4波長または1/2波長のリターダンスを有します。中赤外域用波長板を透過する光のリターダンスには、設計で定めたリターダンスに加えて1波長や半波長などの倍数(次数mで表される)のシフトが生じています。これは、シフトが発生しない真のゼロオーダ波長板や、シフトが数多く発生するマルチオーダ波長板と異なります。この低オーダ設計ではほぼゼロオーダに近い性能を維持できるため、真のゼロオーダ波長板の代替品としてご使用いただくことができます。単体のフッ化マグネシウム基板は、マルチオーダ波長板を2枚組み合わせて設計されたゼロオーダの基板よりも薄いため、この低オーダーリターダは分散しやすい用途に適しています。

マルチオーダ波長板は、光路のリターダンスが整数倍(次数またはm)の波長シフトを受けるように設計されています。ゼロオーダ波長板に比べて、マルチオーダのリターダンスは波長や温度変化に敏感です。しかし、マルチオーダ波長板は低価格なのでこのような敏感さが問題とならない用途で多く使われています。当社では、405~1550 nmの間の波長でマルチオーダ波長板を取り揃えています。また、532 nmと1064 nmで設計されたデュアル波長対応のマルチオーダ波長板もご用意しています。

これらの製品に加えて、当社ではカスタム仕様の波長板の設計や製造も可能です。組み込み用途(OEM用途)向けや小ロットのご注文も承ります。カスタム品のご要望や製造に関するご質問などございましたら、お気軽に当社までご連絡ください。

Back to Top

マルチオーダ波長板、532 nm & 1064 nm

+1 数量 資料 型番 - ユニバーサル規格 定価(税抜) 出荷予定日
WPDM05M-1064H-532Q Support Documentation
WPDM05M-1064H-532QØ1/2" Mounted Multi-Order Dual Wavelength Wave Plate 1/2-wave @ 1064 nm & 1/4-wave @ 532 nm, Ø1" Mount
¥54,682
7-10 Days
WPDM05M-532H-1064Q Support Documentation
WPDM05M-532H-1064QØ1/2" Mounted Multi-Order Dual Wavelength Wave Plate 1/2-wave @ 532 nm & 1/4-wave @ 1064 nm, Ø1" Mount
¥54,682
7-10 Days